3 research outputs found

    Isolation and Characterization of EMILIN-2, a New Component of the Growing EMILINs Family and a Member of the EMI Domain-containing Superfamily

    Get PDF
    EMILIN (elastin microfibril interfase located Protein) is an elastic fiber-associated glycoprotein consisting of a self-interacting globular C1q domain at the C terminus, a short collagenous stalk, an extended region of potential coiled-coil structure, and an N-terminal cysteine-rich domain (EMI domain). Using the globular C1q domain as a bait in the yeast two-hybrid system, we have isolated a cDNA encoding a novel protein. Determination of the entire primary structure demonstrated that this EMILIN-binding polypeptide is highly homologous to EMILIN. The domain organization is superimposable, one important difference being a proline-rich (41%) segment of 56 residues between the potential coiled-coil region and the collagenous domain absent in EMILIN. The entire gene (localized on chromosome 18p11.3) was isolated from a BAC clone, and it is structurally almost identical to that of EMILIN (8 exons, 7 introns with identical phases at the exon/intron boundaries) but much larger (about 40 versus 8 kilobases) than that of EMILIN. Given these findings we propose to name the novel protein EMILIN-2 and the prototype member of this family EMILIN-1 (formerly EMILIN). The mRNA expression of EMILIN-2 is more restricted compared with that of EMILIN-1; highest levels are present in fetal heart and adult lung, whereas, differently from EMILIN-1, adult aorta, small intestine, and appendix show very low expression, and adult uterus and fetal kidney are negative. Finally, the EMILIN-2 protein is secreted extracellularly by in vitro-grown cells, and in accordance with the partial coexpression in fetal and adult tissues, the two proteins shown extensive but not absolute immunocolocalization in vitro

    β1 Integrin-dependent Cell Adhesion to EMILIN-1 Is Mediated by the gC1q Domain

    No full text
    EMILIN-1 (Elastin Microfibril Interface Located ProteIN), the prototype of the EMILIN family, consists of a cysteine-rich domain (EMI domain) at the N terminus, an extended region with a high potential coiled-coil structure, a short collagenous stalk, and a self-interacting globular gC1q-l domain. EMILIN-1 is an adhesive extracellular matrix constituent associated with elastic fibers, detected also in the proximity of cell surfaces. To localize the cell attachment site(s), monoclonal antibodies (mAbs) against EMILIN-1 or the gC1q-1 domain were used to inhibit cell attachment to EMILIN-1. Thus, one mAb mapping to the gC1q-1 domain caused complete inhibition of cell attachment. EMILIN-1 and gC1q-1 displayed a comparable dose-dependent ability to promote cell adhesion. Adhesion kinetics was similar to that of fibronectin (FN), reaching the maximum level of attachment at 20 min, but in the absence of cations adhesion was negligible. The relative adhesion strength to detach 50% of the cells was similar for EMILIN-1 and gC1q-1 (250-270 x g) but lower than that for FN (500). Cell adhesion to EMILIN-1 or gC1q-1 was completely blocked by a function-blocking beta(1) integrin subunit mAb. In contrast, adhesion to the complement C1q component was totally unaffected. Among the various function-blocking mAbs against the alpha integrin subunits only the anti-alpha(4) fully abrogated cell adhesion to gC1q-1 and up to 70% to EMILIN-1. Furthermore, only K562 cells transfected with the alpha(4) integrin chain, but not wild type K562, were able to adhere to EMILIN-1 and were specifically inhibited by anti-alpha(4) function-blocking mAb. Finally, cells attached to EMILIN-1 or gC1q-1, compared with cells plated on FN or vitronectin, which appeared well spread out on the substrate with prominent stress fibers and focal contacts, were much smaller with wide ruffles and a different organization status of the actin cytoskeleton along the cell periphery. This pattern was in accord with the ability of EMILIN-1 to promote cell movement
    corecore