8 research outputs found

    Reinforced poliovirus and enterovirus surveillance in Romania

    No full text
    International audienceDue to the risk of poliovirus importation from Ukraine in 2015, a combined surveillance program monitoring the circulation of enteroviruses (EVs) in healthy children from at-risk areas and in the environment was conducted in Romania. Virological testing of stool samples collected from 155 healthy children aged from two months to six years and of 186 sewage water samples collected from different areas was performed. A total of 58 (37.42%) stool samples and 50 (26.88%) sewage water samples were positive for non-polio EVs, but no poliovirus was detected. A high level of circulation of echovirus (E) types 6 and 7 and coxsackievirus (CV) type B5 was observed

    Cobalt Ferrite/Polyetherimide Composites as Thermally Stable Materials for Electromagnetic Interference Shielding Uses

    No full text
    The progress of the automated industry has introduced many benefits in our daily life, but it also produces undesired electromagnetic interference (EMI) that distresses the end-users and functionality of electronic devices. This article develops new composites based on a polyetherimide (PEI) matrix and cobalt ferrite (CoFe2O4) nanofiller (10–50 wt%) by mixing inorganic phase in the poly(amic acid) solution, followed by film casting and controlled heating, to acquire the corresponding imide structure. The composites were designed to contain both electric and magnetic dipole sources by including highly polarizable groups (phenyls, ethers, -CN) in the PEI structure and by loading this matrix with magnetic nanoparticles, respectively. The films exhibited high thermal stability, having the temperature at which decomposition begins in the interval of 450–487 °C. Magnetic analyses indicated a saturation magnetization, coercitive force, and magnetic remanence of 27.9 emu g−1, 705 Oe, and 9.57 emu g−1, respectively, for the PEI/CoFe2O4 50 wt%. Electrical measurements evidenced an increase in the conductivity from 4.42 10−9 S/cm for the neat PEI to 1.70 10−8 S/cm for PEI/CoFe2O4 50 wt% at 1 MHz. The subglass γ- and β-relaxations, primary relaxation, and conductivity relaxation were also examined depending on the nanofiller content. These novel composites are investigated from the point of view of their EMI shielding properties, showing that they are capable of attenuating the electric and magnetic parts of electromagnetic waves

    Differential regulation of the Wnt/β-catenin pathway by hepatitis C virus recombinants expressing core from various genotypes

    No full text
    International audienceClinical studies have suggested association of some hepatitis C virus (HCV) subtypes or isolates with progression toward hepatocellular carcinoma (HCC). HCV core protein has been reported to interfere with host Wnt/β-catenin pathway, a cell fate-determining pathway, which plays a major role in HCC. Here, we investigated the impact of HCV core genetic variability in the dysregulation of Wnt/β-catenin pathway. We used both transient expression of core proteins from clinical isolates of HCV subtypes 1a (Cambodia), 4a (Romania) and 4f (Cameroon) and infection systems based on a set of engineered intergenotypic recombinant viruses encoding core from these various clinical strains. We found that TCF transcription factor-dependent reporter activity was upregulated by core in a strain-specific manner. We documented core sequence-specific transcriptional upregulation of several β-catenin downstream target genes associated with cell proliferation and malignant transformation, fibrogenesis or fat accumulation. The extent of β-catenin nuclear translocation varied in accordance with β-catenin downstream gene upregulation in infected cells. Pairwise comparisons of subgenotypic core recombinants and mutated core variants unveiled the critical role of core residues 64 and 71 in these dysregulations. In conclusion, this work identified natural core polymorphisms involved in HCV strain-specific activation of Wnt/β-catenin pathway in relevant infection systems

    Mutation spectrum of hepatocellular carcinoma from eastern-European patients betrays the impact of a complex exposome

    No full text
    International audienceGenomic analysis of hepatocellular carcinoma (HCC) has been shown to provide clues about local risk factors. In the last decades, the mortality from malignant liver tumors increased sharply in Romania, where both hepatitis viruses and environmental pollutants are known to be highly prevalent. To date, HCC from this country has not been subject to molecular characterization. We analyzed a series of 48 consecutive HCC cases. Point mutations were searched in 9 nuclear genes and the mitochondrial D-loop. Oxidative stress response was monitored through measurement of gene expression (NRF2, KEAP1, SRXN1, and CES1) by qRT-PCR. An atypical mutation spectrum was observed, as more than 40% of DNA changes were oxidative stress-associated T>C or T>G lesions (T>S). These mutations affected primarily genes encoding for β-catenin and NRF2 (P<0.0001). Besides, tumors from patients born in Greater Bucharest carried TP53 mutations more frequently than others (45 vs 10%, P=0.02). Finally, a R249S mutation of TP53, well-known hallmark of aflatoxin B1 exposure, was found. Our findings indicate, therefore, that distinct mutagenic processes affect Romanian patients with HCC. Further analyses are now warranted in order to identify causal lifestyle or environmental factors
    corecore