22 research outputs found

    Caspase-1:The inflammasome and beyond

    Get PDF
    Caspase-1 plays a fundamental role in innate immunity and in several important inflammatory diseases as the protease activates the pro-inflammatory cytokines proIL-1β and proIL-18. Caspase-1 itself is activated in different inflammasome complexes, which assemble in response to a variety of exogenous and endogenous stressors. More recently, pyroptosis, a caspase-1-dependent type of programmed cell death, has been identified that is able to support secreted IL-1 and IL-18 in triggering an inflammatory response. Whereas these 'canonical' activities are well appreciated, this review also highlights less-known pathways and molecules activated by caspase-1. There is evidence that caspase-1 supports cell survival by activation of NF-κB, induction of membrane repair and regulation of unconventional secretion of certain proteins. The physiologic effects of processing of other downstream targets, such as proteins involved in glycolysis or activation of caspase-7, are less well understood. However, there is increasing evidence that caspase-1 contributes to innate and adaptive immunologic defense mechanisms, repair and pathologic conditions by the regulation of several different and partially opposing pathways

    Quantitative proteomics reveals tissue-specific, infection-induced and species-specific neutrophil protein signatures

    Get PDF
    Neutrophils are one of the first responders to infection and are a key component of the innate immune system through their ability to phagocytose and kill invading pathogens, secrete antimicrobial molecules and produce extracellular traps. Neutrophils are produced in the bone marrow, circulate within the blood and upon immune challenge migrate to the site of infection. We wanted to understand whether this transition shapes the mouse neutrophil protein landscape, how the mouse neutrophil proteome is impacted by systemic infection and perform a comparative analysis of human and mouse neutrophils. Using quantitative mass spectrometry we reveal tissue-specific, infection-induced and species-specific neutrophil protein signatures. We show a high degree of proteomic conservation between mouse bone marrow, blood and peritoneal neutrophils, but also identify key differences in the molecules that these cells express for sensing and responding to their environment. Systemic infection triggers a change in the bone marrow neutrophil population with considerable impact on the core machinery for protein synthesis and DNA replication along with environmental sensors. We also reveal profound differences in mouse and human blood neutrophils, particularly their granule contents. Our proteomics data provides a valuable resource for understanding neutrophil function and phenotypes across species and model systems.</p

    Neutrophil extracellular trap formation is independent of de novo gene expression

    Get PDF
    Neutrophils are essential innate immune cells whose responses are crucial in the clearance of invading pathogens. Neutrophils can respond to infection by releasing neutrophil extracellular traps (NETs). NETs are formed of chromatin and specific granular proteins and are released after execution of a poorly characterized cell death pathway. Here, we show that NET formation induced by PMA or Candida albicans is independent of RNA polymerase II and III-mediated transcription as well as of protein synthesis. Thus, neutrophils contain all the factors required for NET formation when they emerge from the bone marrow as differentiated cells

    Extensive acute and sustained changes to neutrophil proteomes post-SARS-CoV-2 infection

    Get PDF
    Background Neutrophils are important in the pathophysiology of coronavirus disease 2019 (COVID-19), but the molecular changes contributing to altered neutrophil phenotypes following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are not fully understood. We used quantitative mass spectrometry-based proteomics to explore neutrophil phenotypes immediately following acute SARS-CoV-2 infection and during recovery. Methods Prospective observational study of hospitalised patients with PCR-confirmed SARS-CoV-2 infection (May to December 2020). Patients were enrolled within 96 h of admission, with longitudinal sampling up to 29 days. Control groups comprised non-COVID-19 acute lower respiratory tract infection (LRTI) and age-matched noninfected controls. Neutrophils were isolated from peripheral blood and analysed using mass spectrometry. COVID-19 severity and recovery were defined using the World Health Organization ordinal scale. Results Neutrophil proteomes from 84 COVID-19 patients were compared to those from 91 LRTI and 42 control participants. 5800 neutrophil proteins were identified, with &gt;1700 proteins significantly changed in neutrophils from COVID-19 patients compared to noninfected controls. Neutrophils from COVID-19 patients initially all demonstrated a strong interferon signature, but this signature rapidly declined in patients with severe disease. Severe disease was associated with increased abundance of proteins involved in metabolism, immunosuppression and pattern recognition, while delayed recovery from COVID-19 was associated with decreased granule components and reduced abundance of metabolic proteins, chemokine and leukotriene receptors, integrins and inhibitory receptors. Conclusions SARS-CoV-2 infection results in the sustained presence of circulating neutrophils with distinct proteomes suggesting altered metabolic and immunosuppressive profiles and altered capacities to respond to migratory signals and cues from other immune cells, pathogens or cytokines.</p

    Approaching Neutrophil Pyroptosis

    Get PDF

    Caspase-8 for outer harmony

    No full text
    corecore