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GRAPHICAL ABSTRACT Summary of the study. Peripheral blood neutrophils from >200 hospitalised patients across three patient groups
(coronavirus disease 2019 (COVID-19), non-COVID-19 lower respiratory tract infection (LRTI) and matched controls) were comprehensively profiled
using mass spectrometry, revealing novel proteomic changes in acute and convalescent COVID-19. DIA: data-independent acquisition; TLR: Toll-like
receptor; ARG: arginase; TGF: transforming growth factor; IFN: interferon.
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High-resolution mass spectrometry analysis of peripheral blood neutrophils from >200 individuals
provides novel insights into neutrophil phenotypes during acute COVID-19 and reveals that altered
neutrophils persist in convalescent COVID-19 patients https://bit.ly/3QSSq9W
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Abstract
Background Neutrophils are important in the pathophysiology of coronavirus disease 2019 (COVID-19),
but the molecular changes contributing to altered neutrophil phenotypes following severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection are not fully understood. We used quantitative mass
spectrometry-based proteomics to explore neutrophil phenotypes immediately following acute SARS-CoV-2
infection and during recovery.
Methods Prospective observational study of hospitalised patients with PCR-confirmed SARS-CoV-2
infection (May to December 2020). Patients were enrolled within 96 h of admission, with longitudinal
sampling up to 29 days. Control groups comprised non-COVID-19 acute lower respiratory tract infection
(LRTI) and age-matched noninfected controls. Neutrophils were isolated from peripheral blood and
analysed using mass spectrometry. COVID-19 severity and recovery were defined using the World Health
Organization ordinal scale.
Results Neutrophil proteomes from 84 COVID-19 patients were compared to those from 91 LRTI and 42
control participants. 5800 neutrophil proteins were identified, with >1700 proteins significantly changed in
neutrophils from COVID-19 patients compared to noninfected controls. Neutrophils from COVID-19
patients initially all demonstrated a strong interferon signature, but this signature rapidly declined in
patients with severe disease. Severe disease was associated with increased abundance of proteins involved
in metabolism, immunosuppression and pattern recognition, while delayed recovery from COVID-19 was
associated with decreased granule components and reduced abundance of metabolic proteins, chemokine
and leukotriene receptors, integrins and inhibitory receptors.
Conclusions SARS-CoV-2 infection results in the sustained presence of circulating neutrophils with
distinct proteomes suggesting altered metabolic and immunosuppressive profiles and altered capacities to
respond to migratory signals and cues from other immune cells, pathogens or cytokines.

Introduction
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection has a diverse spectrum of presentations, from asymptomatic or pre-symptomatic, to
critical illness involving development of pneumonia and acute respiratory distress syndrome (ARDS) [1–3].
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The immune response plays a key role in determining the outcome of SARS-CoV-2 infection with either
immunodeficiency or an excessive inflammatory response causing morbidity and mortality. Major immune
events following COVID-19 include a type I interferon response (IFN-I) in many cells [4, 5], T-cell
lymphopenia [6–8], cytokine storm [6, 7, 9, 10], myeloid compartment dysregulation [4, 8, 11, 12] and
procoagulant pathway activation [10, 13]. Neutrophils are key effector cells of the innate response to
pathogens [14, 15] and in severe COVID-19 there are increased blood neutrophil counts [2, 16–18], along
with evidence of emergency myelopoiesis and the appearance of circulating immature neutrophils in
peripheral blood [11, 19–22]. Moreover, neutrophil activation signatures and increased neutrophil
extracellular trap production (NETosis) predict disease trajectory [23–25]. Neutrophil populations
following SARS-CoV-2 infection have been characterised using mass cytometry [22, 26, 27], flow
cytometry [21, 28] and by single-cell RNA sequencing [4, 29–31], and profound changes in circulating
neutrophils associated with SARS-CoV-2 infection have been identified in these studies. However, it is
recognised that in-depth quantitative analysis of cellular proteomes can provide insights that are not
obtained from transcriptomes, particularly relating to neutrophil biology [32]. Proteomic analysis of
neutrophils has identified an IFN-I and prothrombotic hyperinflammatory signature in neutrophils isolated
from SARS-CoV-2-infected individuals with ARDS [33]. However, there has been no systematic analysis
of neutrophil proteomes in patients with COVID-19 of differing severity, and exploration of the persistence
of changes in neutrophil phenotypes following SARS-CoV-2 infection has been limited. Interestingly,
recent evidence indicated persistent neutrophil activation several months after acute COVID-19 in patient
subsets demonstrating impaired lung function [34]. Accordingly, the current study used mass spectrometry
to provide a global overview of changes in COVID-19 neutrophils compared to control populations. This
study subsequently tested hypotheses that changes in neutrophil proteome are related to disease severity,
and that the proteome changes over time in relation to clinical status. This extensive patient cohort and
longitudinal sampling strategy up to 29 days post-enrolment has provided an in-depth analysis of the
neutrophil proteome overall and provided novel insights into changes in neutrophils during acute
SARS-CoV-2 infection and during the disease recovery phase.

Methods
The PREDICT-COVID-19 study was a prospective observational case–control study conducted at
Ninewells Hospital (Dundee, UK). Patients with suspected or confirmed COVID-19 were enrolled within
96 h of hospital admission, with SARS-CoV-2 infection confirmed by reverse transcriptase (RT)-PCR
performed on combined oropharyngeal and nasopharyngeal swabs. The study was approved by the East of
Scotland Research Ethics Committee (identifier number: 20/ES/0055). Written informed consent was
provided by all participants. Two control populations were included: 1) hospitalised patients presenting
with community-acquired lower respiratory tract infections (LRTI) not due to SARS-CoV-2 infection and
2) age matched, noninfected controls in hospital for other reasons.

Blood sampling was performed at enrolment (study day 1), and on day 7, 15 and 29 for the COVID-19
cohort while hospitalised. Additionally, at day 29, all participants who had been discharged were invited to
return for follow-up sampling. Full inclusion and exclusion criteria are shown in the supplementary
material. Inclusion criteria for controls were age ⩾16 years, absence of an infection-related diagnosis,
judged as clinically stable by the investigator and able to give informed consent. Exclusion criteria were
known or past SARS-CoV-2 infection in the past 3 months, known contact with a COVID-19 positive case
in the preceding 14 days, any current infection and any contraindication to venepuncture or participation in
the study as judged by the investigator.

Clinical variables
Baseline severity was classified according to the World Health Organization (WHO) scale as WHO3
(hospitalised, not requiring supplementary oxygen), WHO4 (hospitalised, requiring oxygen through
facemask or nasal prongs) and WHO5/6 (requiring high-flow nasal oxygen, continuous positive airway
pressure or invasive mechanical ventilation). Patients were categorised as either recovered, being
discharged with no ongoing symptoms reported (WHO1), or nonrecovered (patients classified as WHO2,
who were discharged but still reporting ongoing symptoms, and WHO3, who were still hospitalised) at day
29 follow-up.

Neutrophil and peripheral blood mononuclear cell isolation and sample preparation for
liquid-chromatography mass spectrometry
Neutrophils were isolated from blood using the EasySep Direct Human Neutrophil Isolation Kit (Stemcell
Technologies #19666) within 2 h of venepuncture. Peripheral blood mononuclear cells (PBMCs) were
isolated by density-gradient separation using Lymphoprep and SepMate columns. Isolated cells were
pelleted and stored at −80°C until analysis.
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Proteomic sample preparation and mass spectrometry analysis
Neutrophil and PBMC pellets were processed for mass spectrometry as described [33]. For each sample,
1.5 mg of peptide was analysed on a Q Exactive HF-X (Thermo Scientific) mass spectrometer coupled with
a Dionex Ultimate 3000 RS (Thermo Scientific). The mass spectrometer was operated in data-independent
acquisition (DIA) mode, and the raw mass spectrometry data were processed using Spectronaut [35]. Full
details of sample preparation for LC-MS and LC-MS analysis are described in the supplementary methods.
All the processed proteomic data is openly available at the Immunological Proteome Resource [36]. All the
mass spectrometry files, as well as the processed search result files are available at the PRoteomics
IDEntifications database [37] under the identifiers PXD036082 and PXD036089.

Statistical methods
The differential expression analyses were performed in R using Limma [38]. q-values were calculated with
the Bioconductor package qvalue. Differences were considered significant when the q-value was ⩽0.05.
p-values for protein families and the PBMC proteins were calculated in R using Welch’s t-test; p-values
⩽0.05 were considered significant. Differences in study group demographics used Chi-squared or Fisher’s
exact test for qualitative variables and Mann–Whitney test for continuous variables after Shapiro–Wilk
normality test; p⩽0.05 was considered significant. Full details including overrepresentation analyses are
described in the supplementary methods.

Results
217 patients were enrolled between May 2020 and December 2020 including 84 individuals with
confirmed COVID-19, 91 with acute LRTI and 42 noninfected controls (table 1). COVID-19 and control
populations were generally well matched at baseline (day 1). Details on age, gender and clinical data are
shown in table 1. Pathogens identified in the LRTI group are listed in supplementary table S11.

The protein landscape of neutrophils from hospitalised COVID-19 patients
Peripheral blood neutrophil proteomes from patients with COVID-19, non-COVID-19 LRTI and control
groups were analysed using mass spectrometry (figure 1a). More than 5800 unique proteins were identified
with a median of 4923 proteins per sample (figure 1b). There were no significant differences in the total
protein content of neutrophils from control, LRTI or COVID-19 patients (figure 1c), but there were
differences in protein landscapes. 300 proteins were significantly increased and 123 proteins significantly
decreased in abundance in neutrophils from LRTI patients compared to controls (figure 1d; supplementary
table S1), including azurophilic granules containing elastase and myeloperoxidase. A stratified analysis of
LRTI patients based on severity revealed similar results (supplementary figure S1). Neutrophil proteomes
from COVID-19 patients showed 1748 proteins significantly changed in abundance (figure 1e;
supplementary table S2); with 1008 proteins significantly increased compared to controls. This included
IFN-induced proteins and metabolic proteins involved in glycolysis and fatty acid oxidation (FAO).
Proteins decreased in expression in neutrophils from COVID-19 patients included CD10, components of
endosomal sorting complexes and key enzymes controlling glycogenolysis.

COVID-19 patients were stratified based on the WHO severity scale and proteomic changes were found to
be proportional to disease severity (supplementary table S3). 221 proteins were significantly changed in
neutrophils from WHO3 (moderate), 779 in WHO4 (severe) and 1483 in WHO5–6 (critically severe)
patients compared to noninfected controls (figure 1f). There was a core signature of 171 neutrophil
proteins changed across all COVID-19 groups (figure 1g; supplementary table S4). This included 101
IFN-I signature proteins that were increased in abundance in neutrophils from WHO3, WHO4 and WHO5–
6 patients, including MX1 and MX2 (figure 1h; supplementary figure S2). MX1 in particular was highly
abundant with a pronounced and robust increase in COVID-19. The core signature also included 70
proteins that were decreased in abundance with functions linked to nuclear rigidity, e.g. SYNE1, SYNE2
and SUN2 (figure 1i) and the laminin B receptor (figure 1j).

Neutrophils from WHO3 patients displayed very few significant changes in metabolic proteins, whereas
neutrophils from WHO5–6 patients had increased expression of proteins controlling FAO, the electron
transport chain, the tricarboxylic acid cycle and key glycolytic proteins (figure 2a). In addition, neutrophils
from WHO5–6 patients had reductions in proteins controlling glycogen breakdown such as glycogen
phosphorylase (PYG)L (figure 2b) and PYGB (figure 2c), and inhibitors of glycogen synthesis glycogen
synthase kinase (GSK)3A (figure 2d) and GSK3B (figure 2e). They also displayed changes in cell surface
receptors (figure 2f), with significant reductions of C5AR1 and CXCR2 in WHO4 and WHO5–6 patient
neutrophils and LTB4R and S1PR4 only in WHO5–6 patients. Additionally, neutrophils from WHO5–6
patients displayed higher abundance of IL1R2 (figure 2g), a decoy interleukin-1 receptor, the inhibitory
receptor VISTA (figure 2h) and the pattern recognition receptor Toll-like receptor (TLR)2 (figure 2i),

https://doi.org/10.1183/13993003.00787-2023 3

EUROPEAN RESPIRATORY JOURNAL ORIGINAL RESEARCH ARTICLE | M.B. LONG ET AL.

http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00787-2023.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00787-2023.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00787-2023.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00787-2023.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00787-2023.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00787-2023.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00787-2023.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00787-2023.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00787-2023.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00787-2023.figures-only#fig-data-supplementary-materials


along with proteins capable of lymphocyte immunosuppression, such as arginase (ARG)1 (figure 2j) and
transforming growth factor (TGF)B1 (figure 2k). We also explored changes associated with dexamethasone
(DEX) treatment across the patient groups, but found that >99.5% of proteins were unchanged between
patients with or without DEX (supplementary table S5), although sample numbers available for this
comparison were limited.

A stratified analysis of patients in the WHO3 group at baseline was performed based on subsequent
deterioration to require supplemental oxygen. Proteins that were significantly increased in abundance in
WHO3 patients who worsened showed enrichment for the translation initiation complex, the proteasome and
terms related to vesicle trafficking proteins (supplementary figure S3a). They also recapitulated patterns
linked to severity, including increased abundance of glycolytic proteins such as lactate dehydrogenase (LDH)
A (supplementary figure S3b) and α-enolase (ENO1) (supplementary figure S3c), increased abundance of
ARG1 (supplementary figure S3d), IL17RA (supplementary figure S3e), TLR2 (supplementary figure S3f)
and CLEC4D (supplementary figure S3g). Furthermore, WHO3 patients who deteriorated also showed
significantly higher abundance of the cap methyl transferase CMTR1 (supplementary figure S3h) reported to
regulate a subset of IFN-induced proteins, BABAM2 (supplementary figure S3i) reported to deubiquitinate
the IFNα receptor, UBE2L6 (supplementary figure S3j) the E2 enzyme responsible for ISG15nylation and
increased abundance of a subset of IFN-induced proteins (supplementary figure S3k–m). In WHO3 patients,
a larger IFN signature was associated with subsequent deterioration.

Longitudinal analysis of neutrophil proteomes following SARS-CoV-2 infection
To gain insight into changes in neutrophil proteomes during disease progression, we also examined
neutrophils from COVID-19 patients 4, 7, 15 and 29 days post-recruitment into the study. A principal

TABLE 1 Patient characteristics at enrolment

SARS-CoV-2-positive Non-COVID-19
LRTI

Noninfected
controls

Patients 84 91 42
Participant demographics
Age years 66.2±14.7

69.5 (55.8–78.5)
65.7±16.7

71.0 (58.0–78.0)
57.4±18.6*

61.0 (35.8–74.2)
Sex at birth (male) 41 (48.8) 46 (50.5) 16 (38.1)

Comorbidities
Chronic cardiac disease 36 (42.9) 37 (40.7) 14 (35.0)
Chronic respiratory disease 24 (28.6) 42 (46.2)* 11 (27.5)
Diabetes 10 (11.9) 13 (14.3) 7 (17.5)
BMI >30 kg·m−2 24 (28.6) 29 (31.9) 11 (27.5)

Severity at enrolment, clinical measurements and
dexamethasone treatment
Hospitalisation
Hospitalised, not requiring oxygen 32 (38.1) 52 (57.1)* NA
Hospitalised, requiring oxygen 33 (39.3) 35 (38.5) NA
Requiring ventilatory support 19 (22.6) 4 (4.4)*** NA

Radiography findings
No changes 20 (23.8) 36 (39.6)* NA
Unilateral pneumonia 14 (16.7) 41 (45.1)****
Bilateral pneumonia 49 (58.3) 0****
Not done 1 (1.2) 14 (15.4)***

Time from symptom onset to hospitalisation
(days)

9.7±12.4
7.0 (4.0–11.0)

Not recorded NA

Length of hospital stay (days) 11.6±10.3
7.0 (4.0–15.5)

7.1 ±6.1**
6.0 (1.0–8.0)

NA

28-day mortality 13 (15.5) Not recorded Not recorded
Dexamethasone treatment while hospitalised 46 (53.6) Not recorded NA
Blood neutrophil count ×109 cells·L−1 5.6±2.8 8.2±3.8**** NA
Blood eosinophil count cells·μL−1 40.1±71.9 121.3±173.3**** NA

Data are presented as n, mean±SD, median (interquartile range) or n (%), unless otherwise stated, and include
all participants with baseline (day 1) samples available. SARS-CoV-2: severe acute respiratory syndrome
coronavirus 2; COVID-19: coronavirus disease 2019; LRTI: lower respiratory tract infection; BMI: body mass index;
NA: not applicable. *: p⩽0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001 versus COVID-19 group.
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FIGURE 1 Core coronavirus disease 2019 (COVID-19) neutrophil proteomic signature. a) Sample collection and processing workflow. 84 COVID-19
samples were included at day 1, and samples from an additional eight participants from whom day 1 samples were unavailable were also included
in later longitudinal analyses. b) Number of proteins identified across all samples for control (n=42), lower respiratory tract infection (LRTI) (n=91)
and COVID-19 (n=84). c) Estimated protein content for all samples for control, LRTI and COVID-19. Group numbers were the same as in b).
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component analysis of all COVID-19 neutrophil samples showed a clear separation between the neutrophil
proteomes of day 1 WHO4 and WHO5–6 and all other samples, with progressive differences from day 7
to 29 (supplementary figure S4a). To explore this further, we compared the proteomes of COVID-19
patients at day 7 to those at day 1 (supplementary table S6) and found only 23 proteins were changed in
patients who were WHO3 at baseline, while >1000 were changed in WHO4 and WHO5–6 patients
(supplementary figure S4b).

Increases in abundance of metabolic proteins were conserved from day 1 to day 7 in WHO5–6 patients, as
were the increases in abundance of the immunosuppressive proteins ARG1, TGFB1 and VISTA
(supplementary figure S5). However, there were 538 proteins that were increased in abundance in
neutrophils from day 7 when compared to day 1 neutrophils from WHO5–6 patients. These included
GSK3α and GSK3β (supplementary figure S4c and d), migratory receptors, such as C5AR1
(supplementary figure S4e), S1PR4 (supplementary figure S4f), FPR1 (supplementary figure S4g),
FPR2 (supplementary figure S4h) and CD177 (supplementary figure S4i), chemokines such as
CXCL8 (supplementary figure S4j), tumour necrosis factor (TNF) signalling proteins such as TNFRSF1A
(supplementary figure S4k), TRAF2 (supplementary figure S4l) and IKBKG (Nemo; supplementary figure
S4m), the immunosuppressive ligand LGALS3 (supplementary figure S4n), the IL1R2 (supplementary
figure S4o) and CSF2RA (supplementary figure S4p).

Analysis of proteins that were decreased in expression in neutrophils from COVID-19 patients at day 7
compared to day 1 found enrichment in proteins that mediate antiviral responses, necroptosis and
chromatin silencing (supplementary figure S6a and b). One protein with the biggest reduction in
abundance in day 7 versus day 1 neutrophils was cap methyltransferases (CMTR)1, the translational
regulator of IFN-I proteins (supplementary figure S6c). Similarly, the neutrophil proteomes of WHO5–6
and also WHO4 patients displayed dramatic reductions in abundance of major IFN-I response proteins at
day 7 compared to day 1 (supplementary figure S6d–f ), suggesting progressive suppression of IFN
signalling. The neutrophils from day 7 WHO5–6 patients also showed marked reductions in abundance of
proteins associated with chromatin structure like H1 histones (supplementary figure S6g) and high mobility
group proteins (supplementary figure S6h) compared to neutrophils analysed on day 1, suggesting changes
in nucleosome structure by day 7. Reduced abundance of signalling molecules and receptors important for
inflammatory responses, including DAP12 (TYROBP; supplementary figure S6i), FcRy (FCER1G;
supplementary figure S6j), NFKBIB (supplementary figure S6k) and NFKBIE (supplementary figure S6l)
was also evidenced in this group at day 7.

Neutrophil proteomic signatures of recovered versus nonrecovered COVID-19 patients
To explore longer term effects of SARS-CoV-2 infection on proteins associated with neutrophil
phenotypes we analysed neutrophils derived from COVID-19 patients 29 days after enrolment. For these
analyses, patients were stratified into those who were recovered (WHO1) and those with persistent
symptoms and limitations or still hospitalised (nonrecovered; WHO2–3). Participant characteristics for
those within this stratified analysis are detailed in supplementary table S12. 404 proteins demonstrated
significantly different expression at day 29 in recovered participant neutrophils compared to control
participants (figure 3a, supplementary table S7), in nonrecovered participants there were 1111, with some
of the changes being small in magnitude (only 257 proteins with fold change >1.5 in recovered patients
and 540 in nonrecovered patients). The acute changes seen in IFN-I, signalling receptors and
immunosuppressive proteins were no longer present at day 29. We calculated the estimated protein content
per cell and found the neutrophils from recovered patients were not significantly different to controls
(figure 3c), unlike nonrecovered patients, thus the neutrophil proteomes of recovered patients were
increasingly similar to controls. However, there were exceptions such as increased expression of the
colony-stimulating factor (CSF) receptor CSF2RA (figure 3d), and reduced abundance of the Fc receptor
common γ chain FCER1G (figure 3e), glycogen phosphorylase PYGL (figure 3f) and the migratory
receptors C3AR1 and LTB4R (figure 3g).

All of these proteins (figure 3d–g) were also significantly altered in the neutrophils from nonrecovered
patients. However, nonrecovered patients had a more profoundly different proteome that also included
markers of immature neutrophils (figure 3h and i). Levels of the activation marker CD64 were also

(n=18), WHO4 (n=19) and WHO5–6 (n=11) patients. All p-values were calculated using empirical Bayes methods with moderated t-tests. For all
boxplots, the whiskers extend from the hinge to the largest and smaller values no further than 1.5×interquartile range. DIA: data-independent
acquisition; NS: nonsignificant.
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FIGURE 2 Metabolic, signalling and immunosuppressive changes in coronavirus disease 2019 (COVID-19). a) Metabolic proteins that were
significantly changed in abundance in World Health Organization (WHO)5–6 COVID-19 patients. The data are normalised to the maximum value of
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each protein. Estimated protein copy numbers for b) glycogen phosphorylase (PYG)L, c) PYGB, d) glycogen synthase kinase (GSK)3A and e) GSK3B
in the neutrophil proteomes across control (n=42), WHO3 (n=18), WHO4 (n=19) and WHO5–6 (n=11) patients. f ) Immunomodulatory receptors
significantly altered in the neutrophil proteomes of WHO5–6 compared to controls. Proteins in red are significantly increased in abundance in the
neutrophil proteomes of WHO5–6 patients; proteins in blue were significantly decreased in abundance. Estimated protein copy numbers for
g) interleukin-1 receptor type 2 (IL1R2), h) VISTA, i) Toll-like receptor (TLR)2, j) arginase (ARG)1 and k) transforming growth factor (TGF)B1 in the
neutrophil proteomes across control (n=42), WHO3 (n=18), WHO4 (n=19) and WHO5–6 (n=11) patients. All p-values were calculated with limma
using empirical Bayes methods with moderated t-tests. For all boxplots the whiskers extend from the hinge to the largest and smaller values no
further than 1.5×interquartile range. NS: nonsignificant.
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FIGURE 3 Changes in recovered and nonrecovered patients at day 29. a) Number of statistically significant differentially abundant proteins overall
in the neutrophil proteomes of recovered or nonrecovered patients at day 29 compared to controls. b) Overlap of significantly changed proteins in
the recovered and nonrecovered patients at day 29 compared with controls. c) Raincloud plot showing the estimated protein content in picograms
per cell. Coronavirus disease 2019 (COVID-19) patients were stratified by day 29 status (recovered or nonrecovered). Raincloud plot showing the
estimated protein copy numbers for d) CSF2RA, e) FcRy (FCER1G), f ) glycogen phosphorylase (PYG)L, g) LTB4R and h) CD10 across controls, day 1,
day 7 and day 29 COVID-19 patients stratified into recovered and nonrecovered (i.e. by day 29 World Health Organization (WHO) score). Each data
point represents protein levels in a unique sample provided at the specified time point. i) Raincloud plot showing the estimated protein copy
numbers in the peripheral blood mononuclear cell (PBMC) proteomes for ELANE across controls and COVID-19 patients at day 29 stratified into
WHO1 (i.e. recovered) and WHO2–3 (i.e. nonrecovered). Raincloud plot showing j) the estimated protein copy numbers for CD64, the estimated
protein content for k) specific (secondary) granules and l) ficolin granules across controls, day 1, day 7 and day 29 COVID-19 patients stratified into
recovered and nonrecovered. Controls (n=22), day 1 recovered (n=14), day 1 nonrecovered (n=13), day 7 recovered (n=3), day 7 nonrecovered (n=10),
day 29 recovered (n=10), day 29 nonrecovered (n=10). c), i), k) and l) have p-values calculated using Welch’s t-test. All other p-values were
calculated using empirical Bayes methods with moderated t-tests. All raincloud plots include a density blot and a boxplot. For all boxplots the
whiskers extend from the hinge to the largest and smaller values no further than 1.5×interquartile range. NS: nonsignificant.
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significantly higher in abundance in the proteomes of neutrophils from nonrecovered patients compared to
controls (figure 3j). Neutrophils from nonrecovered patients had reductions in a select set of granule
proteins (figure 3k), including significant reductions in proteins from specific and ficolin granules (figure 3l).
These changes did not appear linked to neutrophil maturity markers; gelatinase granules and secretory
vesicles, the last set of granules to be produced during development, were not significantly reduced in the
neutrophils from nonrecovered patients compared to control neutrophils (supplementary figure S7).

A distinctive feature of the neutrophil proteome in nonrecovered patients was the systematic reduction in
proteins involved in vital metabolic pathways. These changes included reduced abundance of rate-limiting
regulators of glycolysis like the glucose transporter SLC2A3, hexokinase 3 (HK3) and the lactate
transporter SLC16A3 (figure 4a). Interestingly reduced expression of SLC2A3 and HK3 (figure 4b and c)
was only found in the neutrophils isolated at day 29 from nonrecovered patients and was not seen earlier in
the course of disease. This was also the case for glycogen synthesis regulators such as the GBE1, a
glycogen branching enzyme, and glycogenin 1 (GYG1) (figure 4d and e).

Neutrophils derived from nonrecovered patients showed consistent reductions in the abundance of receptors
that control neutrophil migration (figure 4f), including C3AR1 and LTB4R, which were surprisingly also
decreased in neutrophils from recovered patients. However, in nonrecovered individuals this also included
other vital receptors like the sphingosine-1-phosphate receptor S1PR4 (figure 4g) and the chemokine
receptor CXCR2 (figure 4h). Additionally, reduced abundance of integrins CD18, CD11b, CD11a (figure
4i and j, supplementary figure S8) and reduced expression of SYK (figure 4k), a kinase that mediates
integrin and Fc receptor signalling, was observed; all of these changes were only present at day 29. Day 29
nonrecovered patients also showed modest reductions of signalling molecules that mediate the functions of
inhibitory receptors such as SH-2-containing inositol 5′ phosphatase SHIP-1 (INPP5D; figure 4m), and the
SH-2-containing tyrosine phosphatase SHP-1 (PTPN6; figure 4n). Furthermore, reductions in abundance of
inhibitory receptors of the C-type-lectin family and leukocyte immunoglobulin-like family were identified
(figure 4l).

Discussion
This study provides a valuable resource centred around the large-scale proteomic characterisation of
hundreds of neutrophil proteomes in a control cohort, in acute disease and in recovery, providing in-depth
mapping of longitudinal changes related to COVID-19. Our study is one of many demonstrating the
potential for large-scale proteomics and multi-omics to profile immune responses in respiratory disease
[39–42]. We identified proteomic signatures associated with severe acute disease such as transient IFN-I
signalling and upregulation of key neutrophil receptors and metabolic pathway components. Importantly,
both persistent and emerging changes associated with nonrecovery at day 29 post-enrolment were found,
including a reduction in certain granule protein groups and reduced inhibitory and migratory machinery
and metabolic protein abundance.

Prior studies of small cohorts with COVID-19-associated ARDS identified an IFN-I proteomic signature in
neutrophils [33, 43]. The present data revealed that this signature is present in most neutrophil proteomes
derived from COVID-19 patients at day 1, regardless of disease severity. However, some differences were
present, where an increased IFN-I signature in WHO3 patients associated with subsequent worsening
condition, conversely an increase in WHO5–6 patients correlated with better outcomes (supplementary
table S8). As IFN-I levels can reflect viral load, the link with viral titres and outcomes in mild and severe
COVID-19 would be of interest for future investigations [44, 45]. Furthermore, the IFN-I signature was
transient and its kinetics associated with disease severity. Neutrophils from WHO3 patients sustained an
IFN-I signature for >1 week post-admission, whereas WHO4 and WHO5–6 patients lost this signature
more rapidly. This divergence suggests the potential for stratified therapeutic interventions, using MX1 as a
marker for IFN-I activity, as described previously [46], whereby levels of MX1 could be measured in
blood using a lateral flow test [47]. This could theoretically be used to stratify critically ill patients lacking
an IFN-I response who could potentially benefit from IFN-β treatment during acute severe viral infection.

In addition, the data identified neutrophil markers of disease severity including molecules known to have
immunosuppressive functions, such LGALS3, ARG1 and TGFB1, all of which were still elevated in
WHO5–6 COVID-19 patients for ⩾7 days post-admission. At day 7, increased abundance of important
migratory receptors such as S1PR4, FPR1 and FPR2, along with higher abundance of CXCL8, a potent
chemoattractant, was revealed in WHO5–6 patients; this suggests that their neutrophils may have increased
capacity to migrate into the tissues while having an augmented immunosuppressive capacity. Severity
analyses also highlighted important receptors like the inhibitory receptor VISTA and the pattern
recognition receptors TLR2 and CLEC4D, all of which remained significantly increased in abundance

https://doi.org/10.1183/13993003.00787-2023 9

EUROPEAN RESPIRATORY JOURNAL ORIGINAL RESEARCH ARTICLE | M.B. LONG ET AL.

http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00787-2023.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00787-2023.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00787-2023.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00787-2023.figures-only#fig-data-supplementary-materials


CD200R1

CD33

CLEAC4A

LILRB2

PECAM1

LILRB3

PILRA

SIGLEC5

Estimated copy numbers

0 2000 6000

g) SIPR4

Control

Day 1
Recovered

Day 1
Nonrecovered

Day 7
Recovered

Day 7
Nonrecovered

Day 29
Recovered

Day 29
Nonrecovered

p=0.0041

p=0.0085

p=0.012

p=0.015

NS

p=0.0013

Estimated copy numbers

0 10 000 20 000

h) CXCR2

Control

Day 1
Recovered

Day 1
Nonrecovered

Day 7
Recovered

Day 7
Nonrecovered

Day 29
Recovered

Day 29
Nonrecovered

p=0.016

p=0.0031

NS

NS

NS

p=0.0013

4000

Estimated copy numbers

0 1 000 000

i) CD18 (ITGB2)

Control

Day 1
Recovered

Day 1
Nonrecovered

Day 7
Recovered

Day 7
Nonrecovered

Day 29
Recovered

Day 29
Nonrecovered

NS

NS

NS

NS

NS

p<0.00001

Estimated copy numbers

0 1 000 000 2 000 000

j) CD11b (ITGAM)

Control

Day 1
Recovered

Day 1
Nonrecovered

Day 7
Recovered

Day 7
Nonrecovered

Day 29
Recovered

Day 29
Nonrecovered

p=0.043

p=0.00046

NS

NS

NS

p<0.00001

2 000 000

n)

ITIM: 8

Nonrecovered versus controls:

Lower

Estimated copy numbers

0 50 000 150 000

k) SYK

Control

Day 1
Recovered

Day 1
Nonrecovered

Day 7
Recovered

Day 7
Nonrecovered

Day 29
Recovered

Day 29
Nonrecovered

NS

NS

NS

NS

p=0.01

Estimated copy numbers

0 30 000 60 000

l) SHIP-1 (INPP5D)

Control

Day 1
Recovered

Day 1
Nonrecovered

Day 7
Recovered

Day 7
Nonrecovered

Day 29
Recovered

Day 29
Nonrecovered

NS

NS

NS

NS

NS

p=0.0023

100 000

Estimated copy numbers

0 200 000

m) SHP-1 (PTPN6)

Control

Day 1
Recovered

Day 1
Nonrecovered

Day 7
Recovered

Day 7
Nonrecovered

Day 29
Recovered

Day 29
Nonrecovered

NS

NS

NS

NS

NS

p=0.0083

400 000200 000 90 000

Estimated copy numbers

0 100 000 200 000

d) GBE1

Control

Day 1
Recovered

Day 1
Nonrecovered

Day 7
Recovered

Day 7
Nonrecovered

Day 29
Recovered

Day 29
Nonrecovered

NS

NS

NS

NS

NS

p=0.016

Estimated copy numbers

0 200 000 400 000

e) GYG1

Control

Day 1
Recovered

Day 1
Nonrecovered

Day 7
Recovered

Day 7
Nonrecovered

Day 29
Recovered

Day 29
Nonrecovered

NS

NS

NS

p=0.01

NS

p=0.0083

f) Down in nonrecovered

versus control

Down in both nonrecovered

and recovered versus control

ICAM3

PECAM1

S1PR4

PTAFR

CXCR2
CXCR1

ITGAX

ITGAL

ITGAM

ITGB2

C3AR1

LTB4R

LTB4 CXCL1

CXCL8

Estimated copy numbers

0 200 000 400 000

b) SLC2A3

Control

Day 1
Recovered

Day 1
Nonrecovered

Day 7
Recovered

Day 7
Nonrecovered

Day 29
Recovered

Day 29
Nonrecovered

NS

NS

NS

NS

NS

p=0.0021

Estimated copy numbers

0 200 000 400 000

c) HK3

Control

Day 1
Recovered

Day 1
Nonrecovered

Day 7
Recovered

Day 7
Nonrecovered

Day 29
Recovered

Day 29
Nonrecovered

NS

NS

NS

NS

NS

p=0.00082

600 000

a)

Not significant Down in nonrecovered Down in both nonrecovered and recovered

Glycolysis

SLC16A3

LDHA

LDHB

PGK1

PGK2

GAPDH

PGAM1

ENO2

ENO3

ENO1

PKM

HK2

HK1

HK3
PFKP

PFKM

PFKL

SLC2A3

GPI
ALDOA

ALDOC

Dihydroxyacetone

phosphate

Lactate (2) Pyruvate (2)

10 89 7

5

6 23

4

1

GlucosePEP 2PG 1,3BPG F1,6BP3PG GADP G6P

2
 A

T
P

2
 A

D
P

2
 A

T
P

2
 A

D
P

A
T

P
A

D
P

A
T

P
A

D
P

F6P

2
H

2
O

2
N

A
D

H
 +

 2
H

+

2
N

A
D

+
 +

 2
R

NS

FIGURE 4 Neutrophil migratory, metabolic and inhibitory machinery at day 29. a) Glycolytic pathway highlighting proteins that were significantly
reduced in abundance in the nonrecovered patients. Raincloud plot showing the estimated protein copy numbers for b) SLC2A3, c) hexokinase 3
(HK3), d) GBE1 and e) glycogenin 1 (GYG1) across controls, and day 1, day 7 and day 29 coronavirus disease 2019 (COVID-19) patients stratified into
recovered and nonrecovered. Each data point represents protein levels in a unique sample provided at the specified time point. f ) Migratory
receptors and integrins that are exclusively reduced in abundance in the nonrecovered patients compared to controls. Raincloud plot showing the
estimated protein copy numbers for g) sphingosine-1-phosphate receptor 4 (S1PR4), h) CXCR2, i) CD18 (ITGB2), j) CD11b (ITGAM), k) SYK, l) SH-2-
containing inositol 5′ phosphatase (SHIP)-1 (INPP5D), m) SH-2-containing tyrosine phosphatase (SHP)-1 (PTPN6) across controls, day 1, day 7 and
day 29 COVID-19 patients stratified into recovered or nonrecovered (i.e. not recovered at day 29). n) Sankey diagram showing the inhibitory
receptors that are significantly decreased in abundance in the neutrophil proteomes of nonrecovered patients. COVID-19 patients providing
samples at the respective time points were stratified by their day 29 status (recovered or nonrecovered). Controls (n=22), day 1 recovered (n=14),

https://doi.org/10.1183/13993003.00787-2023 10

EUROPEAN RESPIRATORY JOURNAL ORIGINAL RESEARCH ARTICLE | M.B. LONG ET AL.



⩾7 days post-admission. The association of high VISTA and TLR2 abundance in neutrophils with
COVID-19 disease severity is intriguing and offers potential targets to limit inflammation. TLR2 has been
reported to bind to SARS-CoV-2 spike protein as well as other viral pathogens such as respiratory
syncytial virus and trigger inflammatory cascades [48, 49], suggesting antagonistic antibodies could limit
inflammation. Similarly, VISTA is both an inhibitory ligand and receptor, and has been suggested as a
target to manage excessive innate immune activation [50]. The TNF-receptor TNFR1 (TNFRSF1A) was
also significantly increased from baseline to day 7 in the most severe patients; TNFR1 has been associated
with ageing and risk of mortality in COVID-19 [51], with a role in neutrophil hyperactivation and
mobilisation [52]; and TNFR1 antibody treatment has shown promising anti-inflammatory effects in
healthy volunteers [53].

We also noted metabolic changes in neutrophils associated with severity and recovery status. Critically ill
patients displayed changes in abundance of proteins across a wide array of metabolic pathways, some of
which could be explained by an increased proportion of immature neutrophils in patients with severe
disease, and others (e.g. LDHA) have been linked to hypoxia [54, 55] and NET production [56]. These
changes were present at earlier time points, but resolved by day 29. The only consistent metabolic change
across all time points was a reduction in the abundance of the rate-limiting enzymes of glycogenolysis,
PYGL and PYGB.

COVID-19 causes prolonged illness in a subset of patients and a novel aspect of this study was the
analysis of neutrophil proteomes during recovery. At day 29 post-enrolment, recovered patients displayed
neutrophil proteomes increasingly similar to controls, while nonrecovered patients had abnormal metabolic
profiles distinct from the changes seen at day 1 and 7. Neutrophils have been shown to depend on
glycolysis for energy production when the environment is nutrient rich [14, 57–59] and to default to
glycogen breakdown when it is not [49]. These two metabolic pathways are vital to neutrophil functions,
and our data show significantly lower abundance of key rate-limiting proteins of both glycolysis and
glycogenolysis in the proteomes of nonrecovered patients. Reductions in both pathways impair the
bioenergetic capacity of neutrophils and have been shown to lead to impaired killing and impaired survival
capacities [60].

The potentially dysfunctional phenotype of post-COVID-19 neutrophils was not limited to metabolism.
Peripheral blood neutrophils depend on receptors and integrins to recognise migratory signals and perform
the extravasation process. The neutrophil proteomes of nonrecovered patients displayed a consistent
reduction in migratory receptor levels, from the chemokine and complement receptors to
spingosine-1-phosphate receptors. They also showed significantly reduced abundance of subunits of the
Mac-1 and LFA-1 complexes that mediate leucocyte extravasation [61]. These changes may suggest
reduced capacity of neutrophils to migrate from the blood into the sites of inflammation, potentially
increasing vulnerability to secondary infections; mutations that affect function or abundance of CD18 in
human neutrophils cause leukocyte adhesion deficiency and result in increased susceptibility to bacterial
infections [62]. Nonrecovered COVID-19 patients also displayed a systematic reduction in the abundance
of inhibitory receptors and phosphatases which are required to limit neutrophil activation [63–67]. A recent
study following-up patients 3 and 6 months after severe acute COVID-19 showed persistent and differential
neutrophil-associated signatures in plasma samples in those demonstrating interstitial lung changes [34].
The reduction in inhibitory machinery proteins evidenced in the present study might explain the loss of
granule proteins; potentially representing a persistent degranulating neutrophil phenotype at day 29.
Whether this hypothesised phenotype could have deleterious consequences remains to be determined; it
has previously been identified as a part of a tissue protective mechanism [68] and also as a feature of an
activated phenotype in the bloodstream with potentially lethal consequences [14].

A key limitation of the present study is its descriptive nature, and therefore mechanistic conclusions cannot
be made. Evaluation of relevant neutrophil functions alongside proteomic analysis in a further cohort with
acute respiratory infection would be pertinent further work in addition to characterisation of airway cells.
This study was conducted predominantly during the first and second waves of the UK COVID-19
pandemic and includes only hospitalised patients. Therefore, the impact of subsequent circulating variants
on systemic neutrophil functions in a predominantly vaccinated population and in outpatients, remains to

day 1 nonrecovered (n=13), day 7 recovered (n=3), day 7 nonrecovered (n=10), day 29 recovered (n=10), day 29 nonrecovered (n=10). All p-values
were calculated using empirical Bayes methods with moderated t-tests. All raincloud plots include a density blot and a boxplot. For all boxplots
the whiskers extend from the hinge to the largest and smaller values no further than 1.5×interquartile range.
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be confirmed. In addition, while we studied symptoms up to day 29, some patients with COVID-19
experience much longer-term symptoms; whether the persistent neutrophil dysfunction that we have
observed continues beyond day 29 requires further study.

In conclusion, COVID-19 and other respiratory viral infections remain a risk to global health. Utilising
data from patients enrolled during the first and second waves of the COVID-19 pandemic, these data
highlight important areas to direct further research, including key follow-up studies with neutrophil
functional testing post-infection. We performed one of the most in-depth proteomic profiling investigations
of peripheral blood neutrophils to date, and identified a core neutrophil proteomic signature associated with
acute disease and identified key neutrophil receptors linked to disease severity which could be potential
therapeutic targets. Furthermore, this study characterised a molecular phenotype linked to delayed recovery
which may further understanding of later, long COVID as well as avenues for investigation of delayed
recovery in other viral infections such as influenza, and should be investigated further in these patients.
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