10 research outputs found
Recommended from our members
Collision chains among the terrestrial planets. III. formation of the moon
In the canonical model of Moon formation, a Mars-sized protoplanet âTheiaâ collides with proto-Earth at close to their mutual escape velocity vesc and a common impact angle âŒ45°. The âgraze-and-mergeâ collision strands a fraction of Theiaâs mantle into orbit, while Earth accretes most of Theia and its momentum. Simulations show that this produces a hot, high angular momentum, silicate-dominated protolunar system, in substantial agreement with lunar geology, geochemistry, and dynamics. However, a Moon that derives mostly from Theiaâs mantle, as angular momentum dictates, is challenged by the fact that O, Ti, Cr, radiogenic W, and other elements are indistinguishable in Earth and lunar rocks. Moreover, the model requires an improbably low initial velocity. Here we develop a scenario for Moon formation that begins with a somewhat faster collision, when proto-Theia impacts proto-Earth at ⌠1.2vesc, also around âŒ45°. Instead of merging, the bodies come into violent contact for a half hour and their major components escape, a âhit-and-runâ collision. N-body evolutions show that the ârunnerâ often returns âŒ0.1â1 Myr later for a second giant impact, closer to vesc; this produces a postimpact disk of âŒ2â3 lunar masses in smoothed particle hydrodynamics simulations, with angular momentum comparable to canonical scenarios. The disk ends up substantially inclined, in most cases, because the terminal collision is randomly oriented to the first. Moreover, proto-Earth contributions to the protolunar disk are enhanced by the compounded mixing and greater energy of a collision chain. © 2021. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Secondary mineralogy of Jezero delta rocks from hydrogen and carbon emission lines in supercam libs data
International audienc
An Examination of Soil Crusts on the Floor of Jezero Crater, Mars
Martian soils are critically important for understanding the history of Mars, past potentially habitable environments, returned samples, and future human exploration. This paper examines soil crusts on the floor of Jezero crater encountered during initial phases of the Mars 2020 mission. Soil surface crusts have been observed on Mars at other locations, starting with the two Viking Lander missions. Rover observations show that soil crusts are also common across the floor of Jezero crater, revealed in 45 of 101 locations where rover wheels disturbed the soil surface, 2 out of 7 helicopter flights that crossed the wheel tracks, and 4 of 8 abrasion/drilling sites. Most soils measured by the SuperCam laser-induced breakdown spectroscopy (LIBS) instrument show high hydrogen content at the surface, and fine-grained soils also show a visible/near infrared (VISIR) 1.9 ”m H2O absorption feature. The Planetary Instrument for X-ray Lithochemistry (PIXL) and SuperCam observations suggest the presence of salts at the surface of rocks and soils. The correlation of S and Cl contents with H contents in SuperCam LIBS measurements suggests that the salts present are likely hydrated. On the âNaltsosâ target, magnesium and sulfur are correlated in PIXL measurements, and Mg is tightly correlated with H at the SuperCam points, suggesting hydrated Mg-sulfates. Mars Environmental Dynamics Analyzer (MEDA) observations indicate possible frost events and potential changes in the hydration of Mg-sulfate salts. Jezero crater soil crusts may therefore form by salts that are hydrated by changes in relative humidity and frost events, cementing the soil surface together
An Examination of Soil Crusts on the Floor of Jezero Crater, Mars
Martian soils are critically important for understanding the history of Mars, past potentially habitable environments, returned samples, and future human exploration. This paper examines soil crusts on the floor of Jezero crater encountered during initial phases of the Mars 2020 mission. Soil surface crusts have been observed on Mars at other locations, starting with the two Viking Lander missions. Rover observations show that soil crusts are also common across the floor of Jezero crater, revealed in 45 of 101 locations where rover wheels disturbed the soil surface, 2 out of 7 helicopter flights that crossed the wheel tracks, and 4 of 8 abrasion/drilling sites. Most soils measured by the SuperCam laser-induced breakdown spectroscopy (LIBS) instrument show high hydrogen content at the surface, and fine-grained soils also show a visible/near infrared (VISIR) 1.9 ”m H2O absorption feature. The Planetary Instrument for X-ray Lithochemistry (PIXL) and SuperCam observations suggest the presence of salts at the surface of rocks and soils. The correlation of S and Cl contents with H contents in SuperCam LIBS measurements suggests that the salts present are likely hydrated. On the âNaltsosâ target, magnesium and sulfur are correlated in PIXL measurements, and Mg is tightly correlated with H at the SuperCam points, suggesting hydrated Mg-sulfates. Mars Environmental Dynamics Analyzer (MEDA) observations indicate possible frost events and potential changes in the hydration of Mg-sulfate salts. Jezero crater soil crusts may therefore form by salts that are hydrated by changes in relative humidity and frost events, cementing the soil surface together.</p
Composition and density stratification observed by supercam in the first 300 sols in Jezero crater
International audienc
Composition and density stratification observed by supercam in the first 300 sols in Jezero crater
International audienc
Composition and density stratification observed by supercam in the first 300 sols in Jezero crater
International audienc
Composition and density stratification observed by supercam in the first 300 sols in Jezero crater
International audienc