5,331 research outputs found

    On-a-chip microdischarge thruster arrays inspired by photonic device technology for plasma television

    No full text
    This study shows that the practical scaling of a hollow cathode thruster device to MEMS level should be possible albeit with significant divergence from traditional design. The main divergence is the need to operate at discharge pressures between 1-3bar to maintain emitter diameter pressure products of similar values to conventional hollow cathode devices. Without operating at these pressures emitter cavity dimensions become prohibitively large for maintenance of the hollow cathode effect and without which discharge voltage would be in the hundreds of volts as with conventional microdischarge devices. In addition this requires sufficiently constrictive orifice diameters in the 10”m – 50”m range for single cathodes or <5”m larger arrays. Operation at this pressure results in very small Debye lengths (4 -5.2pm) and leads to large reductions in effective work function (0.3 – 0.43eV) via the Schottky effect. Consequently, simple work function lowering compounds such as lanthanum hexaboride (LaB6) can be used to reduce operating temperature without the significant manufacturing complexity of producing porous impregnated thermionic emitters as with macro scale hollow cathodes, while still operating <1200°C at the emitter surface. The literature shows that LaB6 can be deposited using a variety of standard microfabrication techniques

    A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields

    Get PDF
    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between upstream and downstream basins. A major advantage of the energy-balance approach is that it can be used to quantify spatial extent of irrigated fields and their water-use dynamics without reference to source of water as opposed to a water-balance model which requires knowledge of both the magnitude and temporal distribution of rainfall and irrigation applied to fields

    Counting Rotational Sets for Laminations of the Unit Disk from First Principles

    Full text link
    By studying laminations of the unit disk, we can gain insight into the structure of Julia sets of polynomials and their dynamics in the complex plane. The polynomials of a given degree, dd, have a parameter space. The hyperbolic components of such parameter spaces are in correspondence to rotational polygons, or classes of "rotational sets", which we study in this paper. By studying the count of such rotational sets, and therefore the underlying structure behind these rotational sets and polygons, we can gain insight into the interrelationship among hyperbolic components of the parameter space of these polynomials. These rotational sets are created by uniting rotational orbits, as we define in this paper. The number of such sets for a given degree dd, rotation number pq\frac pq, and cardinality kk can be determined by analyzing the potential placements of pre-images of zero on the unit circle with respect to the rotational set under the dd-tupling map. We obtain a closed-form formula for the count. Though this count is already known based upon some sophisticated results, our count is based upon elementary geometric and combinatorial principles, and provides an intuitive explanation.Comment: 12 pages, 5 figure

    Unintentional miRNA Ablation Is a Risk Factor in Gene Knockout Studies: A Short Report

    Get PDF
    One of the most powerful techniques for studying the function of a gene is to disrupt the expression of that gene using genetic engineering strategies such as targeted recombination or viral integration of gene trap cassettes. The tremendous utility of these tools was recognized this year with the awarding of the Nobel Prize in Physiology or Medicine to Capecchi, Evans, and Smithies for their pioneering work in targeted recombination mutagenesis in mammals. Another noteworthy discovery made nearly a decade ago was the identification of a novel class of non-coding genes called microRNAs. MicroRNAs are among the largest known classes of regulatory elements with more than 1000 predicted to exist in the mouse genome. Over 50% of known microRNAs are located within introns of coding genes. Given that currently about half of the genes in mouse have been knocked out, we investigated the possibility that intronic microRNAs may have been coincidentally deleted or disrupted in some of these mouse models. We searched published murine knockout studies and gene trap embryonic stem cell line databases for cases where a microRNA was located within or near the manipulated genomic loci, finding almost 200 cases where microRNA expression may have been disrupted along with another gene. Our results draw attention to the need for careful planning in future knockout studies to minimize the unintentional disruption of microRNAs. These data also raise the possibility that many knockout studies may need to be reexamined to determine if loss of a microRNA contributes to the phenotypic consequences attributed to loss of a protein-encoding gene

    The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy

    Get PDF
    The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic datasets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1.5 (3.0) times 10^{-17} erg/s/cm^2, close to the noise level of the grism exposures, for objects detected in the deep ancillary photometric data. Unlike previous methods, the Bayesian nature allows for probabilistic line identifications, namely redshift estimates, based on secondary emission line detections and/or photometric redshift priors. As a first application, we measure the comoving number density of Extreme Emission Line Galaxies (restframe [O III] 5007 equivalent widths in excess of 500 Angstroms). We find that these galaxies are nearly 10 times more common above z~1.5 than at z<0.5. With upcoming large grism surveys such as Euclid and WFIRST as well as grisms featuring prominently on the NIRISS and NIRCam instruments on James Webb Space Telescope, methods like the one presented here will be crucial for constructing emission line redshift catalogs in an automated and well-understood manner.Comment: 16 pages, 14 Figures; Accepted to Ap

    Identity dynamics as a barrier to organizational change

    Get PDF
    This article seeks to explore the construction of group and professional identities in situations of organizational change. It considers empirical material drawn from a health demonstration project funded by the Scottish Executive Health Department, and uses insights from this project to discuss issues that arise from identity construction(s) and organizational change. In the course of the project studied here, a new organizational form was developed which involved a network arrangement with a voluntary sector organization and the employment of “lay-workers” in what had traditionally been a professional setting. Our analysis of the way actors made sense of their identities reveals that characterizations of both self and other became barriers to the change process. These identity dynamics were significant in determining the way people interpreted and responded to change within this project and which may relate to other change-oriented situations
    • 

    corecore