78 research outputs found
Are Orai1 and Orai3 channels more important than calcium influx for cell proliferation?
AbstractTransformed and tumoral cells share the characteristic of being able to proliferate even when external calcium concentration is very low. We have investigated whether Human Embryonic Kidney 293 cells, human hepatoma cell Huh-7 and HeLa cells were able to proliferate when kept 72h in complete culture medium without external calcium. Our data showed that cell proliferation rate was similar over a range of external calcium concentration (2ÎĽM to 1.8mM). Incubation in the absence of external calcium for 72h had no significant effect on endoplasmic reticulum (ER) Ca2+ contents but resulted in a significant decrease in cytosolic free calcium concentration in all 3 cell types. Cell proliferation rates were dependent on Orai1 and Orai3 expression levels in HEK293 and HeLa cells. Silencing Orai1 or Orai3 resulted in a 50% reduction in cell proliferation rate. Flow cytometry analysis showed that Orai3 induced a small but significant increase in cell number in G2/M phase. RO-3306, a cdk-1 inhibitor, induced a 90% arrest in G2/M reversible in less than 15min. Our data showed that progression through G2/M phase after release from RO-3306-induced cell cycle arrest was slower in both Orai1 and Orai3 knock-downs. Overexpressing Orai1, Orai3 and the dominant negative non-permeant mutants E106Q-Orai1 and E81Q-Orai3 induced a 50% increase in cell proliferation rate in HEK293 cells. Our data clearly demonstrated that Orai1 and Orai3 proteins are more important than calcium influx to control cell proliferation in some cell lines and that this process is probably independent of ICRAC and Iarc
Functional implications of calcium permeability of the channel formed by pannexin 1
Although human pannexins (PanX) are homologous to gap junction molecules, their physiological function in vertebrates remains poorly understood. Our results demonstrate that overexpression of PanX1 results in the formation of Ca2+-permeable gap junction channels between adjacent cells, thus, allowing direct intercellular Ca2+ diffusion and facilitating intercellular Ca2+ wave propagation. More intriguingly, our results strongly suggest that PanX1 may also form Ca2+-permeable channels in the endoplasmic reticulum (ER). These channels contribute to the ER Ca2+ leak and thereby affect the ER Ca2+ load. Because leakage remains the most enigmatic of those processes involved in intracellular calcium homeostasis, and the molecular nature of the leak channels is as yet unknown, the results of this work provide new insight into calcium signaling mechanisms. These results imply that for vertebrates, a new protein family, referred to as pannexins, may not simply duplicate the connexin function but may also provide additional pathways for intra- and intercellular calcium signaling and homeostasis
Remodeling of Channel-Forming ORAI Proteins Determines an Oncogenic Switch in Prostate Cancer
SummaryORAI family channels have emerged as important players in malignant transformation, yet the way in which they reprogram cancer cells remains elusive. Here we show that the relative expression levels of ORAI proteins in prostate cancer are different from that in noncancerous tissue. By mimicking ORAI protein remodeling observed in primary tumors, we demonstrate in in vitro models that enhanced ORAI3 expression favors heteromerization with ORAI1 to form a novel channel. These channels support store-independent Ca2+ entry, thereby promoting cell proliferation and a smaller number of functional homomeric ORAI1-based store-operated channels, which are important in supporting susceptibility to apoptosis. Thus, our findings highlight disrupted dynamic equilibrium of channel-forming proteins as an oncogenic mechanism
Voltage- and cold-dependent gating of single TRPM8 ion channels
Transient receptor potential (TRP) channels play critical roles in cell signaling by coupling various environmental factors to changes in membrane potential that modulate calcium influx. TRP channels are typically activated in a polymodal manner, thus integrating multiple stimuli. Although much progress has been made, the underlying mechanisms of TRP channel activation are largely unknown. The TRPM8 cation channel has been extensively investigated as a major neuronal cold sensor but is also activated by voltage, calcium store depletion, and some lipids as well as by compounds that produce cooling sensations, such as menthol or icilin. Several models of TRPM8 activation have been proposed to explain the interaction between these diverse stimuli. However, a kinetic scheme is not yet available that can describe the detailed single-channel kinetics to gain further insight into the underlying gating mechanism. To work toward this goal, we investigated voltage-dependent single-channel gating in cell-attached patches at two different temperatures (20 and 30°C) using HEK293 cells stably expressing TRPM8. Both membrane depolarization and cooling increased channel open probability (Po) mainly by decreasing the duration of closed intervals, with a smaller increase in the duration of open intervals. Maximum likelihood analysis of dwell times at both temperatures indicated gating in a minimum of five closed and two open states, and global fitting over a wide range of voltages identified a seven-state model that described the voltage dependence of Po, the single-channel kinetics, and the response of whole-cell currents to voltage ramps and steps. The major action of depolarization and cooling was to accelerate forward transitions between the same two sets of adjacent closed states. The seven-state model provides a general mechanism to account for TRPM8 activation by membrane depolarization at two temperatures and can serve as a starting point for further investigations of multimodal TRP activation
Caractérisation du canal calcique TRPM8 dans la physiopathologie de la prostate humaine
Seconde cause de mortalité par cancer chez l'individu de sexe masculin, le cancer de la prostate présente une incidence croissante liée à l'augmentation de l'espérance de vie dans les pays développés. Les variations pathologiques d'homéostasie calcique sont connues pour participer à l'évolution du cancer de la prostate. Cette thèse porte sur l'étude du canal ionique TRPM8 dont l'expression est spécifique de la prostate et augmente dans les cellules cancéreuses. Nos résultats montrent que l'expression de TRPM8 est finement régulée par le récepteur aux androgènes dans les cellules épithéliales apicales de la prostate et que son apparition coïncide avec la différenciation terminale de ces cellules. Nous démontrons que le canal est fonctionnel dans le plasmalemme des cellules épithéliales apicales, mais aussi dans la membrane du réticulum endoplasmique. Finalement, en corrélant ces travaux avec d'autres réalisés sur des cellules cancéreuses de la prostate, nous avons proposé un modèle d'évolution de l'activité du canal TRPM8 au cours de la différenciation et de l'oncogenèse des cellules de la prostate. Nous avons, d'autre part, mis en évidence l'existence d'isoformes de TRPM8 dont certaines sont des canaux ioniques fonctionnels alors que d'autres sont des petites protéines tronquées agissant comme sous-unités régulatrices du canal TRPM8. Pour finir, nous avons caractérisé une voie d'activation du canal TRPM8 par la phospholipase A2 indépendante du calcium et nous avons réalisé une étude pharmacologique démontrant l'activation de TRPM8 par une classe de molécules dérivées de l'iciline.LILLE1-BU (590092102) / SudocSudocFranceF
Optimal differentiation of in vitro keratinocytes requires multifactorial external control.
For almost 30 years, keratinocyte differentiation has been studied in numerous cell models including keratinocyte primary culture with various supplemented culture media. In this respect, it has become quite difficult to draw comparisons between studies using such a variety of culture conditions. Serum-free condition with low calcium has been used to culture basal proliferating cells, though differentiation is induced by various procedures. These latter include the addition of calcium at mM concentration and a concomitant addition of serum and calcium. Lowering the incubation temperature of cells has also been reported to induce a premature differentiation of keratinocytes in organotypic skin culture. This effect of temperature on keratinocyte differentiation has been poorly depicted, although average human skin temperature has been shown to be about 32 °C. However, studying differentiation and quantifying shifts in the differentiation rate of a cell population implies to precisely know i) the proportion of differentiated cells in the whole population, and ii) to which extent and to which level of expression, the induction of a gene or a protein might be considered as a marker of differentiation. This lack has rarely been taken into consideration and has surely led to over-interpretations of single protein induction and to consequent extrapolations to real differentiation processes. By means of paralleled analyses with immunocytofluorescence, flow cytometry, and with multiple differentiation markers quantify by qPCR and western-blot, we studied the paradoxical connection between calcium, serum, multilayer culture and incubation temperature on the differentiation of in vitro keratinocytes. Conversely to previous reports, we have shown that calcium switch is indeed a potent model for inducing calcium-dependent genes, but is not an efficient procedure when one wishes to assess the keratinocyte differentiation rate. Moreover, we have demonstrated that a synergic stimulation by calcium, serum, confluence and lower incubation temperature amplified the differentiation rate
Fine-tuning of eTRPM8 expression and activity conditions keratinocyte fate
International audienceRecently, we reported the cloning and characterization of short isoform of the icilin-activated cold receptor TRPM8 channel in keratinocytes, dubbed eTRPM8. We demonstrated that eTRPM8 via fine tuning of the endoplasmic reticulum (ER) – mitochondria Ca2+ shuttling regulates mitochondrial ATP and superoxide (O2•-) production and, thereby, mediates control of epidermal homeostasis by mild cold. Here, we provide additional information explaining why eTRPM8 suppression and TRPM8 stimulation both inhibit keratinocyte growth. We also demonstrate that stimulation of eTRPM8 with icilin may give rise to sustained oscillatory responses. Furthermore, we show that ATP-induced cytosolic and mitochondrial Ca2+ responses are attenuated by eTRPM8 suppression. This suggests positive interplay between eTRPM8 and purinergic signaling pathways, what may serve to facilitate the ER-mitochondria Ca2+ shuttling. Finally, we demonstrate that cold (25°C) induces eTRPM8-dependent superoxide-mediated necrosis of keratinocytes. Altogether, these results are in line with our model of eTRPM8-mediated cold-dependent balance between keratinocyte proliferation and differentiatio
- …