56 research outputs found

    Macular Choroidal Thickening in Keratoconus Patients: Swept-Source Optical Coherence Tomography Study.

    Get PDF
    To determine the choroidal thickness (CT) profile in keratoconus (KC) patients using swept-source optical coherence tomography (SS-OCT). This was a prospective, cross-sectional study. One hundred two eyes of 52 KC patients were studied using Pentacam and SS-OCT. The macular CT profile was created by manually measuring the distance between the retinal pigment epithelium and the choroid-sclera junction on horizontal b-scans at nine different macular locations. The results were compared to 93 eyes of 93 healthy controls. Mean age of the KC group was 34.9 ± 13.5 years and mean axial length (AL) was 24.1 ± 1.3 mm. Mean topographic KC classification (TKC) was 2.0; 39 eyes were classified as early KC (TKC <1-2), 34 eyes as moderate (TKC 2, 2-3), and 29 as advanced (TKC 3+). Mean subfoveal CT was 383.2 μm in KC patients and 280.5 μm in control group ( <i>P</i> < 0.001). CT in KC patients was statistically thicker in all measure locations ( <i>P</i> < 0.001). CT in KC eyes decreased with age, approaching control group at >45 years old, losing statistical significance ( <i>P</i> = 0.37). CT in KC patients is statistically thicker than in healthy population. After age 45, CT decreases approaching control group values. This study describes changes in the CT profile of KC patients, a disease that was considered purely corneal. These choroidal changes argue that KC is a disease that likely involves several ocular structures other than the cornea, and could open new research lines related to the pathophysiology of KC

    Phase II Randomized, Double-Masked, Vehicle-Controlled Trial of Recombinant Human Nerve Growth Factor for Neurotrophic Keratitis

    Get PDF
    Purpose: To evaluate the safety and efficacy of topical recombinant human nerve growth factor (rhNGF) for treating moderate-to-severe neurotrophic keratitis (NK), a rare degenerative corneal disease resulting from impaired corneal innervation. Design: Phase II multicenter, randomized, double-masked, vehicle-controlled trial. Participants: Patients with stage 2 (moderate) or stage 3 (severe) NK in 1 eye. Methods: The REPARO phase II study assessed safety and efficacy in 156 patients randomized 1:1:1 to rhNGF 10 \u3bcg/ml, 20 \u3bcg/ml, or vehicle. Treatment was administered 6 drops per day for 8 weeks. Patients then entered a 48- or 56-week follow-up period. Safety was assessed in all patients who received study treatment, whereas efficacy was by intention to treat. Main Outcome Measures: Corneal healing (defined as <0.5-mm maximum diameter of fluorescein staining in the lesion area) was assessed by masked central readers at week 4 (primary efficacy end point) and week 8 (key secondary end point) of controlled treatment. Corneal healing was reassessed post hoc by masked central readers using a more conservative measure (0-mm staining in the lesion area and no other persistent staining). Results: At week 4 (primary end point), 19.6% of vehicle-treated patients achieved corneal healing (<0.5-mm lesion staining) versus 54.9% receiving rhNGF 10 \u3bcg/ml (+35.3%; 97.06% confidence interval [CI], 15.88\u201354.71; P < 0.001) and 58.0% receiving rhNGF 20 \u3bcg/ml (+38.4%; 97.06% CI, 18.96\u201357.83; P < 0.001). At week 8 (key secondary end point), 43.1% of vehicle-treated patients achieved less than 0.5-mm lesion staining versus 74.5% receiving rhNGF 10 \u3bcg/ml (+31.4%; 97.06% CI, 11.25\u201351.49; P = 0.001) and 74.0% receiving rhNGF 20 \u3bcg/ml (+30.9%; 97.06% CI, 10.60\u201351.13; P = 0.002). Post hoc analysis of corneal healing by the more conservative measure (0-mm lesion staining and no other persistent staining) maintained statistically significant differences between rhNGF and vehicle at weeks 4 and 8. More than 96% of patients who healed after controlled rhNGF treatment remained recurrence free during follow-up. Treatment with rhNGF was well tolerated; adverse effects were mostly local, mild, and transient. Conclusions: Topical rhNGF is safe and more effective than vehicle in promoting healing of moderate-to-severe NK

    EMMPRIN Promotes Melanoma Cells Malignant Properties through a HIF-2alpha Mediated Up-Regulation of VEGF-Receptor-2

    Get PDF
    EMMPRIN's expression in melanoma tissue was reported to be predictive of poor prognosis. Here we demonstrate that EMMPRIN up-regulated VEGF receptor-2 (VEGFR-2) in two different primary melanoma cell lines and consequently increased migration and proliferation of these cells while inhibiting their apoptosis. SiRNA inhibition of VEGFR-2 expression abrogated these EMMPRIN effects. EMMPRIN regulation of VEGFR-2 was mediated through the over-expression of HIF-2α and its translocation to the nucleus where it forms heterodimers with HIF-1β. These results were supported by an in vivo correlation between the expression of EMMPRIN with that of VEGFR-2 in human melanoma tissues as well as with the extent of HIF-2α localization in the nucleus. They demonstrate a novel mechanism by which EMMPRIN promotes tumor progression through HIF-2α/VEGFR-2 mediated mechanism, with an autocrine role in melanoma cell malignancy. The inhibition of EMMPRIN in cancer may thus simultaneously target both the VEGFR-2/VEGF system and the matrix degrading proteases to block tumor cell growth and invasion

    Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer

    Get PDF
    BACKGROUND. Monocarboxylate transporters (MCTs) are transmembrane proteins involved in the transport of monocarboxylates across the plasma membrane, which appear to play an important role in solid tumours, however the role of MCTs in prostate cancer is largely unknown.The aim of the present work was to evaluate the clinico-pathological value of monocarboxylate transporters (MCTs) expression, namely MCT1, MCT2 and MCT4, together with CD147 and gp70 as MCT1/4 and MCT2 chaperones, respectively, in prostate carcinoma. METHODS. Prostate tissues were obtained from 171 patients, who performed radical prostatectomy and 14 patients who performed cystoprostatectomy. Samples and clinico-pathological data were retrieved and organized into tissue microarray (TMAs) blocks. Protein expression was evaluated by immunohistochemistry in neoplastic (n= 171), adjacent non-neoplastic tissues (n= 135), PIN lesions (n=40) and normal prostatic tissue (n=14). Protein expression was correlated with patients' clinicopathologic characteristics. RESULTS. In the present study, a significant increase of MCT2 and MCT4 expression in the cytoplasm of tumour cells and a significant decrease in both MCT1 and CD147 expression in prostate tumour cells was observed when compared to normal tissue. All MCT isoforms and CD147 were expressed in PIN lesions. Importantly, for MCT2 and MCT4 the expression levels in PIN lesions were between normal and tumour tissue, which might indicate a role for these MCTs in the malignant transformation. Associations were found between MCT1, MCT4 and CD147 expressions and poor prognosis markers; importantly MCT4 and CD147 overexpression correlated with higher PSA levels, Gleason score and pT stage, as well as with perineural invasion and biochemical recurrence. CONCLUSIONS. Our data provides novel evidence for the involvement of MCTs in prostate cancer. According to our results, we consider that MCT2 should be further explored as tumour marker and both MCT4 and CD147 as markers of poor prognosis in prostate cancer.NPG, CP and VMG received fellowships from the Portuguese Foundation for Science and Technology (FCT), refs. SFRH/BD/61027/2009, SFRH/BPD/69479/ 2010 and SFRH/BI/33503/2008, respectively. This work was supported by the FCT grant ref. PTDC/SAU-FCF/104347/2008, under the scope of Programa Operacional Temático Factores de Competitividade” (COMPETE) of Quadro Comunitário de Apoio III and co-financed by Fundo Comunitário Europeu FEDER

    Coenzyme Q10 Reduces Ethanol-Induced Apoptosis in Corneal Fibroblasts

    Get PDF
    Dilute ethanol (EtOH) is a widely used agent to remove the corneal epithelium during the modern refractive surgery. The application of EtOH may cause the underlying corneal fibroblasts to undergo apoptosis. This study was designed to investigate the protective effect and potential mechanism of the respiratory chain coenzyme Q10 (CoQ10), an electron transporter of the mitochondrial respiratory chain and a ubiquitous free radical scavenger, against EtOH-induced apoptosis of corneal fibroblasts. Corneal fibroblasts were pretreated with CoQ10 (10 µM) for 2 h, followed by exposure to different concentrations of EtOH (0.4, 2, 4, and 20%) for 20 s. After indicated incubation period (2–12 h), MTT assay was used to examine cell viability. Treated cells were further assessed by flow cytometry to identify apoptosis. Reactive oxygen species (ROS) and the change in mitochondrial membrane potential were assessed using dichlorodihydrofluorescein diacetate/2′,7′-dichlorofluorescein (DCFH-DA/DCF) assays and flow-cytometric analysis of JC-1 staining, respectively. The activity and expression of caspases 2, 3, 8, and 9 were evaluated with a colorimetric assay and western blot analysis. We found that EtOH treatment significantly decreased the viability of corneal fibroblasts characterized by a higher percentage of apoptotic cells. CoQ10 could antagonize the apoptosis inducing effect of EtOH. The inhibition of cell apoptosis by CoQ10 was significant at 8 and 12 h after EtOH exposure. In EtOH-exposed corneal fibroblasts, CoQ10 pretreatment significantly reduced mitochondrial depolarization and ROS production at 30, 60, 90, and 120 min and inhibited the activation and expression of caspases 2 and 3 at 2 h after EtOH exposure. In summary, pretreatment with CoQ10 can inhibit mitochondrial depolarization, caspase activation, and cell apoptosis. These findings support the proposition that CoQ10 plays an antiapoptotic role in corneal fibroblasts after ethanol exposure

    Metalloproteinases and their inhibitors—diagnostic and therapeutic opportunities in orthopedics

    Get PDF
    Matrix metalloproteinases (MMPs) and related enzymes (ADAMs, ADAMTS) and their inhibitors control matrix turnover and function. Recent advances in our understanding of musculoskeletal conditions such as tendinopathy, arthritis, Dupuytren's disease, degenerative disc disease, and bone and soft tissue healing suggest that MMPs have prominant roles. Importantly, MMPs are amenable to inhibition by cheap, safe, and widely available drugs such as the tetracycline antibiotics and the bisphosphonates. This indicates that these MMP inhibitors, if proven effective for any novel indication, may be quickly brought into clinical practice
    corecore