181 research outputs found
On the Interferometric Sizes of Young Stellar Objects
Long-baseline optical interferometers can now detect and resolve hot dust
emission thought to arise at the inner edge of circumstellar disks around young
stellar objects (YSOs). We argue that the near-infrared sizes being measured
are closely related to the radius at which dust is sublimated by the stellar
radiation field. We consider how realistic dust optical properties and gas
opacity dramatically affect the predicted location of this dust destruction
radius, an exercise routinely done in other contexts but so far neglected in
the analysis of near-infrared sizes of YSOs. We also present the accumulated
literature of near-infrared YSO sizes in the form of a ``size-luminosity
diagram'' and compare with theoretical expectations. We find evidence that
large (>~ 1 micron) dust grains predominate in the inner disks of T Tauri and
Herbig Ae/Be stars, under the assumption that the inner-most gaseous disks are
optically-thin at visible wavelengths.Comment: Accepted by Astrophysical Journa
Co-phasing the Large Binocular Telescope: status and performance of LBTI/PHASECam
The Large Binocular Telescope Interferometer is a NASA-funded nulling and
imaging instrument designed to coherently combine the two 8.4-m primary mirrors
of the LBT for high-sensitivity, high-contrast, and high-resolution infrared
imaging (1.5-13 um). PHASECam is LBTI's near-infrared camera used to measure
tip-tilt and phase variations between the two AO-corrected apertures and
provide high-angular resolution observations. We report on the status of the
system and describe its on-sky performance measured during the first semester
of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope
and the light-gathering power of single 11.8-meter mirror, the co-phased LBT
can be considered to be a forerunner of the next-generation extremely large
telescopes (ELT).Comment: 8 pages, 5 figures, SPIE Conference proceeding
Exoplanet science with the LBTI: instrument status and plans
The Large Binocular Telescope Interferometer (LBTI) is a strategic instrument
of the LBT designed for high-sensitivity, high-contrast, and high-resolution
infrared (1.5-13 m) imaging of nearby planetary systems. To carry out a
wide range of high-spatial resolution observations, it can combine the two
AO-corrected 8.4-m apertures of the LBT in various ways including direct
(non-interferometric) imaging, coronagraphy (APP and AGPM), Fizeau imaging,
non-redundant aperture masking, and nulling interferometry. It also has
broadband, narrowband, and spectrally dispersed capabilities. In this paper, we
review the performance of these modes in terms of exoplanet science
capabilities and describe recent instrumental milestones such as first-light
Fizeau images (with the angular resolution of an equivalent 22.8-m telescope)
and deep interferometric nulling observations.Comment: 12 pages, 6 figures, Proc. SPI
Study of molecular layers in the atmosphere of the supergiant star µ Cep by interferometry in the K band
Infrared interferometry of supergiant and Mira stars has recently been reinterpreted as revealing the presence of deep molecular layers. Empirical models for a photosphere surrounded by a simple molecular layer or envelope have led to a consistent interpretation of previously inconsistent data. The stellar photospheres are found to be smaller than previously understood, and the molecular layer is much higher and denser than predicted by hydrostatic equilibrium. However, the analysis was based on spatial observations with medium-band optical filters, which mixed the visibilities of different spatial structures. This paper reports spatial interferometry with narrow spectral bands, isolating near-continuum and strong molecular features, obtained for the supergiant µ Cep. The measurements confirm strong variation of apparent diameter across the K-band. A layer model shows that a stellar photosphere of angular diameter 14.11±0.60 mas is surrounded by a molecular layer of diameter 18.56±0.26 mas, with an optical thickness varying from nearly zero at 2.15 µm to >1 at 2.39 µm. Although µ Cep and α Ori have a similar spectral type, interferometry shows that they differ in their radiative properties. Comparison with previous broad-band measurements shows the importance of narrow spectral bands. The molecular layer or envelope appears to be a common feature of cool supergiants
First-light LBT nulling interferometric observations: warm exozodiacal dust resolved within a few AU of eta Corvi
We report on the first nulling interferometric observations with the Large
Binocular Telescope Interferometer (LBTI), resolving the N' band (9.81 - 12.41
um) emission around the nearby main-sequence star eta Crv (F2V, 1-2 Gyr). The
measured source null depth amounts to 4.40% +/- 0.35% over a field-of-view of
140 mas in radius (~2.6\,AU at the distance of eta Corvi) and shows no
significant variation over 35{\deg} of sky rotation. This relatively low null
is unexpected given the total disk to star flux ratio measured by Spitzer/IRS
(~23% across the N' band), suggesting that a significant fraction of the dust
lies within the central nulled response of the LBTI (79 mas or 1.4 AU).
Modeling of the warm disk shows that it cannot resemble a scaled version of the
Solar zodiacal cloud, unless it is almost perpendicular to the outer disk
imaged by Herschel. It is more likely that the inner and outer disks are
coplanar and the warm dust is located at a distance of 0.5-1.0 AU,
significantly closer than previously predicted by models of the IRS spectrum
(~3 AU). The predicted disk sizes can be reconciled if the warm disk is not
centrosymmetric, or if the dust particles are dominated by very small grains.
Both possibilities hint that a recent collision has produced much of the dust.
Finally, we discuss the implications for the presence of dust at the distance
where the insolation is the same as Earth's (2.3 AU).Comment: 9 pages, 6 figures, accepted for publication in Ap
Observations of Mira stars with the IOTA/FLUOR interferometer and comparison with Mira star models
We present K'-band observations of five Mira stars with the IOTA
interferometer. The interferograms were obtained with the FLUOR fiber optics
beam combiner, which provides high-accuracy visibility measurements in spite of
time-variable atmospheric conditions. For the M-type Miras X Oph, R Aql, RU
Her, R Ser, and the C-type Mira V CrB we derived the uniform-disk diameters
11.7mas, 10.9mas, 8.4mas, 8.1mas, and 7.9mas (+/- 0.3mas), respectively.
Simultaneous photometric observations yielded the bolometric fluxes. The
derived angular Rosseland radii and the bolometric fluxes allowed the
determination of effective temperatures. For instance, the effective
temperature of R Aql was determined to be 2970 +/- 110 K. A linear Rosseland
radius for R Aql of (250 +100/-60) Rsun was derived from the angular Rosseland
radius of 5.5mas +/- 0.2mas and the HIPPARCOS parallax of 4.73mas +/- 1.19mas.
The observations were compared with theoretical Mira star models of Bessel et
al. (1996) and Hofmann et al. (1998). The effective temperatures of the M-type
Miras and the linear radius of R Aql indicate fundamental mode pulsation.Comment: 12 pages, 4 postscript figure
The near-infrared size-luminosity relations for Herbig Ae/Be disks
We report the results of a sensitive K-band survey of Herbig Ae/Be disk sizes
using the 85-m baseline Keck Interferometer. Targets were chosen to span the
maximum range of stellar properties to probe the disk size dependence on
luminosity and effective temperature. For most targets, the measured
near-infrared sizes (ranging from 0.2 to 4 AU) support a simple disk model
possessing a central optically-thin (dust-free) cavity, ringed by hot dust
emitting at the expected sublimation temperatures (T_sub~1000-1500K).
Furthermore, we find a tight correlation of disk size with source luminosity R
propto L^(1/2) for Ae and late Be systems (valid over more than 2 decades in
luminosity), confirming earlier suggestions based on lower-quality data.
Interestingly, the inferred dust-free inner cavities of the highest luminosity
sources (Herbig B0-B3 stars) are under-sized compared to predictions of the
optically-thin cavity model, likely due to optically-thick gas within the inner
AU.Comment: Accepted by Astrophysical Journal; 24 pages, 4 figures, 4 table
Aperture synthesis using multiple facilities: Keck aperture masking and the IOTA interferometer
As the number of optical interferometers increase, multi-facility observations become both feasible and scientifically interesting. For imaging of complex sources, the capability of increasing (u,v) coverage by using multiple arrays may be necessary for accurately interpreting the fringe visibility and closure phase data. Toward this end, coordinated observations with the IOTA interferometer and Keck aperture masking have been carried out to test techniques for synthesizing images using data from heterogeneous arrays with sparse (u,v) coverage. In particular, we will focus on how the image prior in the Maximum Entropy Method can be used to efficiently incorporate very high spatial frequency information with "low-resolution" data for imaging the generic prototype "Star + Dust Shell" image morphology. Preliminary results using real data for a few dusty evolved stars are presented
The HOSTS Survey for Exozodiacal Dust: Preliminary results and future prospects
[abridged] The presence of large amounts of dust in the habitable zones of
nearby stars is a significant obstacle for future exo-Earth imaging missions.
We executed an N band nulling interferometric survey to determine the typical
amount of such exozodiacal dust around a sample of nearby main sequence stars.
The majority of our data have been analyzed and we present here an update of
our ongoing work. We find seven new N band excesses in addition to the high
confidence confirmation of three that were previously known. We find the first
detections around Sun-like stars and around stars without previously known
circumstellar dust. Our overall detection rate is 23%. The inferred occurrence
rate is comparable for early type and Sun-like stars, but decreases from 71%
[+11%/-20%] for stars with previously detected mid- to far-infrared excess to
11% [+9%/-4%] for stars without such excess, confirming earlier results at high
confidence. For completed observations on individual stars, our sensitivity is
five to ten times better than previous results. Assuming a lognormal luminosity
function of the dust, we find upper limits on the median dust level around all
stars without previously known mid to far infrared excess of 11.5 zodis at 95%
confidence level. The corresponding upper limit for Sun-like stars is 16 zodis.
An LBTI vetted target list of Sun-like stars for exo-Earth imaging would have a
corresponding limit of 7.5 zodis. We provide important new insights into the
occurrence rate and typical levels of habitable zone dust around main sequence
stars. Exploiting the full range of capabilities of the LBTI provides a
critical opportunity for the detailed characterization of a sample of
exozodiacal dust disks to understand the origin, distribution, and properties
of the dust.Comment: To appear in SPIE Astronomical Telescopes + Instrumentation 2018
proceedings. Some typos fixed, one reference adde
- …