4 research outputs found

    Fabrication and Characterization of Gate-All-Around Stacked-Nanowire/Nanosheet MOS transistors realized by a Gate-Last approach for sub-7 nm technology nodes.

    No full text
    La diminution de la taille des transistors actuellement utilisés en microélectronique ainsi que l’augmentation de leurs performances demeure encore au centre de toutes les attentions. Cette thèse propose d’étudier et de fabriquer des transistors à base de nanofils empilés. Cette architecture avec des grilles enrobantes est l’ultime solution pour concentrer toujours plus de courant électrique dans un encombrement minimal. Les simulations ont par ailleurs révélé le potentiel des nanofeuillets de silicium qui permettent à la fois d’optimiser l’espace occupé tout en proposant des performances supérieures aux dispositifs actuels. L’importance de l’ajout de certaines étapes de fabrication a également été soulignée. En ce sens, deux séries d’étapes de fabrication ont été proposées : la première option vise à minimiser le nombre de variations par rapport à ce qui est aujourd’hui en production tandis que la deuxième alternative offre potentiellement de meilleures performances au prix de développements plus importants. Les transistors ainsi fabriqués proposent des performances prometteuses supérieures à ce qui a pu être fabriqué dans le passé notamment grâce à l’introduction de contraintes mécaniques importantes favorables au transport du courant électrique.The future of the transistors currently used in Microelectronics is still uncertain: shrinking these devices while increasing their performances always remains a challenge. In this thesis, stacked nanowire transistors are studied, fabricated and optimized. This architecture embeds gate all around which is the ultimate solution for concentrating always more current within a smaller device. Simulations have shown that silicon nanosheets provide an optimal utilization of the space with providing increased performances over the other technologies. Crucial process steps have also been identified. Subsequently, two process flows have been suggested for the fabrication of SNWFETs. The first approach consists in minimizing the number of variations from processes already in mass production. The second alternative has potentially better performances but its development is more challenging. Finally, the fabricated transistors have shown improved performances over state-of-the-art especially due to mechanical stress induced for improving electric transport

    Fabrication et caractérisation de transistors MOS à base de nanofils de silicium empilés et à grille enrobante réalisés par approche Gate-Last pour les noeuds technologiques sub-7 nm.

    No full text
    The future of the transistors currently used in Microelectronics is still uncertain: shrinking these devices while increasing their performances always remains a challenge. In this thesis, stacked nanowire transistors are studied, fabricated and optimized. This architecture embeds gate all around which is the ultimate solution for concentrating always more current within a smaller device. Simulations have shown that silicon nanosheets provide an optimal utilization of the space with providing increased performances over the other technologies. Crucial process steps have also been identified. Subsequently, two process flows have been suggested for the fabrication of SNWFETs. The first approach consists in minimizing the number of variations from processes already in mass production. The second alternative has potentially better performances but its development is more challenging. Finally, the fabricated transistors have shown improved performances over state-of-the-art especially due to mechanical stress induced for improving electric transport.La diminution de la taille des transistors actuellement utilisés en microélectronique ainsi que l’augmentation de leurs performances demeure encore au centre de toutes les attentions. Cette thèse propose d’étudier et de fabriquer des transistors à base de nanofils empilés. Cette architecture avec des grilles enrobantes est l’ultime solution pour concentrer toujours plus de courant électrique dans un encombrement minimal. Les simulations ont par ailleurs révélé le potentiel des nanofeuillets de silicium qui permettent à la fois d’optimiser l’espace occupé tout en proposant des performances supérieures aux dispositifs actuels. L’importance de l’ajout de certaines étapes de fabrication a également été soulignée. En ce sens, deux séries d’étapes de fabrication ont été proposées : la première option vise à minimiser le nombre de variations par rapport à ce qui est aujourd’hui en production tandis que la deuxième alternative offre potentiellement de meilleures performances au prix de développements plus importants. Les transistors ainsi fabriqués proposent des performances prometteuses supérieures à ce qui a pu être fabriqué dans le passé notamment grâce à l’introduction de contraintes mécaniques importantes favorables au transport du courant électrique

    Optimization of Trigate-On-Insulator MOSFET aspect ratio with MASTAR

    No full text
    session C2L-D: Modeling of Important Issues for Main Stream Silicon DevicesInternational audienceIn this work, the optimum design of Trigate-on-Insulator MOSFET devices is investigated with the MASTAR platform, focusing on the channel aspect ratio. First, the MAS-TAR Trigate model is described, and new components are validated with TCAD simulations. Using the verilog-A implementation of this model, SPICE simulations of inverter chains are later performed to analyze the device performance, employing different power reduction techniques. Finally, the variability issue is addressed with Monte-Carlo simulations of 6T SRAM cells

    Stacked Nanowires FETs: Mechanical robustness evaluation for sub-7nm nodes

    No full text
    session 8: advanced CMOS and New Devices ConceptsInternational audienceStacked Nanowires FETs are proposed to replace FinFET and FDSOI for sub-7nm nodes. While most studies demonstrate the performances gain offered by such structures, mechanical stability of the suspended silicon channels needs to be considered. This paper provides a fully mechanical analytical description of nanowire stacks to explain the occurrence of buckling phenomena of silicon channels
    corecore