11 research outputs found

    Experimental evaluation of a UWB-based cooperative positioning system for pedestrians in GNSS-denied environment

    Get PDF
    Cooperative positioning (CP) utilises information sharing among multiple nodes to enable positioning in Global Navigation Satellite System (GNSS)-denied environments. This paper reports the performance of a CP system for pedestrians using Ultra-Wide Band (UWB) technology in GNSS-denied environments. This data set was collected as part of a benchmarking measurement campaign carried out at the Ohio State University in October 2017. Pedestrians were equipped with a variety of sensors, including two different UWB systems, on a specially designed helmet serving as a mobile multi-sensor platform for CP. Different users were walking in stop-and-go mode along trajectories with predefined checkpoints and under various challenging environments. In the developed CP network, both Peer-to-Infrastructure (P2I) and Peer-to-Peer (P2P) measurements are used for positioning of the pedestrians. It is realised that the proposed system can achieve decimetre-level accuracies (on average, around 20 cm) in the complete absence of GNSS signals, provided that the measurements from infrastructure nodes are available and the network geometry is good. In the absence of these good conditions, the results show that the average accuracy degrades to meter level. Further, it is experimentally demonstrated that inclusion of P2P cooperative range observations further enhances the positioning accuracy and, in extreme cases when only one infrastructure measurement is available, P2P CP may reduce positioning errors by up to 95%. The complete test setup, the methodology for development, and data collection are discussed in this paper. In the next version of this system, additional observations such as the Wi-Fi, camera, and other signals of opportunity will be included

    A Comparison Between Uwb and Laser-based Pedestrian Tracking

    Get PDF
    Despite the availability of GNSS on consumer devices enabled personal navigation for most of the World population in most of the outdoor conditions, the problem of precise pedestrian positioning is still quite challenging when indoors or, more in general, in GNSS-challenging working conditions. Furthermore, the covid-19 pandemic also raised of pedestrian tracking, in any environment, but in particular indoors, where GNSS typically does not ensure sufficient accuracy for checking people distance. Motivated by the mentioned needs, this paper investigates the potential of UWB and LiDAR for pedestrian positioning and tracking. The two methods are compared in an outdoor case study, nevertheless, both are usable indoors as well. The obtained results show that the positioning performance of the LiDAR-based approach overcomes the UWB one, when the pedestrians are not obstructed by other objects in the LiDAR view. Nevertheless, the presence of obstructions causes gaps in the LiDAR-based tracking: instead, the combination of LiDAR and UWB can be used in order to reduce outages in the LiDAR-based solution, whereas the latter, when available, usually improves the UWB-based results.Peer reviewe

    The Effect of Linear Approximation and Gaussian Noise Assumption in Multi-Sensor Positioning through Experimental Evaluation

    Full text link
    Assumptions of Gaussianity in describing the errors of ranging data and linearization of the measurement models are well-accepted techniques for wireless tracking multi-sensor fusion. The main contribution of this paper is the empirical study on the effect of these assumptions on positioning accuracy. A local positioning system (LPS) was set up and raw data were collected using both the global satellite navigation system (GNSS) and the LPS. These data were fused to estimate position using both an extended Kalman filter (EKF) and a particle filter (PF). For these data, it was shown that the PF had an improvement in accuracy over the EKF of 67 cm (72%) with achieved accuracy of 26 cm. This improvement was attributed to the PF handling the non-linear system dynamics, rather than a linear approximation as in the EKF. Furthermore, when the PF used the fitted three-component Gaussian mixture model as the better approximation of the actual LPS ranging error distribution, rather than a Gaussian approximation, a further 3 cm (13%) reduction in positioning error was observed. Overall, the average accuracy of 23 cm was achieved for the proposed multi-sensor positioning system when the assumptions of Gaussianity are not made and the non-linear measurement model is not linearized

    Indoor navigation and mapping: Performance analysis of UWB-based platform positioning

    Get PDF
    © 2020 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. The increasing demand for reliable indoor navigation systems is leading the research community to investigate various approaches to obtain effective solutions usable with mobile devices. Among the recently proposed strategies, Ultra-Wide Band (UWB) positioning systems are worth to be mentioned because of their good performance in a wide range of operating conditions. However, such performance can be significantly degraded by large UWB range errors; mostly, due to non-line-of-sight (NLOS) measurements. This paper considers the integration of UWB with vision to support navigation and mapping applications. In particular, this work compares positioning results obtained with a simultaneous localization and mapping (SLAM) algorithm, exploiting a standard and a Time-of-Flight (ToF) camera, with those obtained with UWB, and then with the integration of UWB and vision. For the latter, a deep learning-based recognition approach was developed to detect UWB devices in camera frames. Such information is both introduced in the navigation algorithm and used to detect NLOS UWB measurements. The integration of this information allowed a 20% positioning error reduction in this case study

    A case study of pedestrian positioning with UWB and UAV cameras

    Get PDF
    Publisher Copyright: © Copyright: Author(s) 2021.The development and availability on consumer devices of the global navigation satellite systems (GNSS) have dramatically changed the everyday-life of most of the human population, enabling real time navigation on almost any smart device produced in the last years. However, such strong dependence on the availability of the GNSS limits the further spread of location based services to the areas where GNSS is not available or reliable. Motivated by these considerations, several research groups recently considered the problem of developing alternative positioning systems able to compensate the unavailability of GNSS in certain areas. Similarly, this paper also investigates the performance of certain alternative methods, which aim at partially substitute GNSS. In particular, the positioning performance of an affordable Ultra Wide-Band system is compared with that of a vision approach, based on the use of visual information acquired by an Unmanned Aerial Vehicle (UAV) flying over the area of interest. In accordance with the results obtained in our dataset, the drone-based vision system usually allow to obtain better positioning results when the pedestrians are visible in the drone video frames (median 2D positioning error less than 25 cm). Nevertheless, the combination of such strategies shall also be investigated in order to obtain a more robust positioning system.Peer reviewe

    A Comparison Between Uwb and Laser-based Pedestrian Tracking

    Get PDF
    Despite the availability of GNSS on consumer devices enabled personal navigation for most of the World population in most of the outdoor conditions, the problem of precise pedestrian positioning is still quite challenging when indoors or, more in general, in GNSS-challenging working conditions. Furthermore, the covid-19 pandemic also raised of pedestrian tracking, in any environment, but in particular indoors, where GNSS typically does not ensure sufficient accuracy for checking people distance. Motivated by the mentioned needs, this paper investigates the potential of UWB and LiDAR for pedestrian positioning and tracking. The two methods are compared in an outdoor case study, nevertheless, both are usable indoors as well. The obtained results show that the positioning performance of the LiDAR-based approach overcomes the UWB one, when the pedestrians are not obstructed by other objects in the LiDAR view. Nevertheless, the presence of obstructions causes gaps in the LiDAR-based tracking: instead, the combination of LiDAR and UWB can be used in order to reduce outages in the LiDAR-based solution, whereas the latter, when available, usually improves the UWB-based results.Peer reviewe

    Society, culture and housing form in England and Japan

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN029478 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Access to primary healthcare during lockdown measures for COVID-19 in rural South Africa: a longitudinal cohort study

    Get PDF
    Objectives Public health interventions designed to interrupt COVID-19 transmission could have deleterious impacts on primary healthcare access. We sought to identify whether implementation of the nationwide lockdown (shelter-in-place) order in South Africa affected ambulatory clinic visitation in rural Kwa-Zulu Natal (KZN). Design Prospective, longitudinal cohort study Setting Data were analyzed from the Africa Health Research Institute Health and Demographic Surveillance System, which includes prospective data capture of clinic visits at eleven primary healthcare clinics in northern KwaZulu-Natal Participants A total of 36,291 individuals made 55,545 clinic visits during the observation period. Exposure of Interest We conducted an interrupted time series analysis with regression discontinuity methods to estimate changes in outpatient clinic visitation from 60 days before through 35 days after the lockdown period. Outcome Measures Daily clinic visitation at ambulatory clinics. In stratified analyses we assessed visitation for the following sub-categories: child health, perinatal care and family planning, HIV services, non-communicable diseases, and by age and sex strata. Results We found no change in total clinic visits/clinic/day from prior to and during the lockdown (-6.9 visits/clinic/day, 95%CI -17.4, 3.7) or trends in clinic visitation over time during the lockdown period (-0.2, 95%CI -3.4, 3.1). We did detect a reduction in child healthcare visits at the lockdown (-7.2 visits/clinic/day, 95%CI -9.2, -5.3), which was seen in both children <1 and children 1-5. In contrast, we found a significant increase in HIV visits immediately after the lockdown (8.4 visits/clinic/day, 95%CI 2.4, 14.4). No other differences in clinic visitation were found for perinatal care and family planning, non-communicable diseases, or among adult men and women. Conclusions In rural KZN, the ambulatory healthcare system was largely resilient during the national-wide lockdown order. A major exception was child healthcare visitation, which declined immediately after the lockdown but began to normalize in the weeks thereafter. Future work should explore efforts to decentralize chronic care for high-risk populations and whether catch-up vaccination programs might be required in the wake of these findings
    corecore