25 research outputs found

    A positive deviance approach to understanding key features to improving diabetes care in the medical home

    Get PDF
    Contains fulltext : 118403.pdf (publisher's version ) (Open Access)PURPOSE The medical home has gained national attention as a model to reorganize primary care to improve health outcomes. Pennsylvania has undertaken one of the largest state-based, multipayer medical home pilot projects. We used a positive deviance approach to identify and compare factors driving the care models of practices showing the greatest and least improvement in diabetes care in a sample of 25 primary care practices in southeast Pennsylvania. METHODS We ranked practices into improvement quintiles on the basis of the average absolute percentage point improvement from baseline to 18 months in 3 registry-based measures of performance related to diabetes care: glycated hemoglobin concentration, blood pressure, and low-density lipoprotein cholesterol level. We then conducted surveys and key informant interviews with leaders and staff in the 5 most and least improved practices, and compared their responses. RESULTS The most improved/higher-performing practices tended to have greater structural capabilities (eg, electronic health records) than the least improved/lower-performing practices at baseline. Interviews revealed striking differences between the groups in terms of leadership styles and shared vision; sense, use, and development of teams; processes for monitoring progress and obtaining feedback; and presence of technologic and financial distractions. CONCLUSIONS Positive deviance analysis suggests that primary care practices' baseline structural capabilities and abilities to buffer the stresses of change may be key facilitators of performance improvement in medical home transformations. Attention to the practices' structural capabilities and factors shaping successful change, especially early in the process, will be necessary to improve the likelihood of successful medical home transformation and better care

    A formal calculus for informal equality with binding

    Get PDF
    Abstract. In informal mathematical usage we often reason using languages with binding. We usually find ourselves placing capture-avoidance constraints on where variables can and cannot occur free. We describe a logical derivation system which allows a direct formalisation of such assertions, along with a direct formalisation of their constraints. We base our logic on equality, probably the simplest available judgement form. In spite of this, we can axiomatise systems of logic and computation such as first-order logic or the lambda-calculus in a very direct and natural way. We investigate the theory of derivations, prove a suitable semantics sound and complete, and discuss existing and future research.

    Hierarchical Decision Making by Autonomous Agents

    No full text
    Often, decision making involves autonomous agents that are structured in a complex hierarchy, representing e.g. authority. Typically the agents share the same body of knowledge, but each may have its own, possibly conflicting, preferences on the available information

    On Programs with Linearly Ordered Multiple Preferences

    No full text
    The extended answer set semantics for logic programs allows for the defeat of rules to resolve contradictions. We propose a refinement of these semantics based on a preference relation on extended literals. This relation, a strict partial order, induces a partial order on extended answer sets. The preferred answer sets, i.e. those that are minimal w.r.t. the induced order, represent the solutions that best comply with the stated preference on extended literals. In a further extension, we propose linearly ordered programs that are equipped with a linear hierarchy of preference relations. The resulting formalism is rather expressive and essentially covers the polynomial hierarchy. E.g. the membership problem for a program with a hierarchy of height n is # n+1 -complete. We illustrate an application of the approach by showing how it can easily express hierarchically structured weak constraints, i.e. a layering of "desirable" constraints, such that one tries to minimize the set of violated constraints on lower levels, regardless of the violation of constraints on higher levels
    corecore