8 research outputs found

    Special Massive Spin-2 on de Sitter Space

    Full text link
    The theory of a massive spin-2 state on the de Sitter space -- with the mass squared equal to one sixth of the curvature -- is special for two reasons: (i) it exhibits an enhanced local symmetry; (ii) it emerges as a part of the model that gives rise to the self-accelerated Universe. The known problems of this theory are: either it cannot be coupled to a non-conformal conserved stress-tensor because of the enhanced symmetry, or it propagates a ghost-like state when the symmetry is constrained by the Lagrange multiplier method. Here we propose a solution to these problems in the linearized approximation.Comment: 9 pages, reference added, JCAP versio

    A short review of "DGP Specteroscopy"

    Get PDF
    In this paper we provide a short review of the main results developed in hep-th/0604086. We focus on linearised vacuum perturbations about the self-accelerating branch of solutions in the DGP model. These are shown to contain a ghost in the spectrum for any value of the brane tension. We also comment on hep-th/0607099, where some counter arguments have been presented.Comment: Minor typos correcte

    Gravity on de-Sitter 3-Brane, Induced Einstein-Hilbert Term and Massless Gravitons

    Full text link
    We study the extensions of DGP model which are described by five-dimensional Einstein gravity coupled covariantly to 3-brane with induced gravity term and consider warped D=4 de Sitter background field solutions on the brane. The case with included D=5 AdS cosmological term is also considered. Following background field method we obtain the field equations described by the Lagrangean terms bilinear in gravitational field. In such a linear field approximation on curved dS background we calculate explicitly the five-dimensional massive terms as well as the mass-like ones on the brane. We investigate the eigenvalue problem of Schr\"{o}dinger-like equation in fifth dimension for graviton masses and discuss the existence of massless as well as massive graviton modes in the bulk and on the brane without and with induced gravity.Comment: LaTeX 26 pages, the version which appears in Class. Quant. Gra

    Self-T-Dual Brane Cosmology and the Cosmological Constant Problem

    Get PDF
    We consider a codimension-one brane embedded in a gravity-dilaton bulk action, whose symmetries are compatible with T-duality along the space-like directions parallel to the brane, and the bulk time-like direction. The equations of motions in the string frame allow for a smooth background obtained by the union of two symmetric patches of AdS space. The Poincar\'{e} invariance of the solution appears to hold independently of the value of the brane vacuum energy, through a self-tuning property of the dilaton ground state. Moreover, the effective cosmology displays a bounce, at which the scale factor does not shrink to zero. Finally, by exploiting the T-duality symmetry, we show how to construct an ever-expanding Universe, along the lines of the Pre-Big Bang scenario.Comment: Minor corrections, comments & references added. Accepted for publicatio

    Perturbations of Self-Accelerated Universe

    Get PDF
    We discuss small perturbations on the self-accelerated solution of the DGP model, and argue that claims of instability of the solution that are based on linearized calculations are unwarranted because of the following: (1) Small perturbations of an empty self-accelerated background can be quantized consistently without yielding ghosts. (2) Conformal sources, such as radiation, do not give rise to instabilities either. (3) A typical non-conformal source could introduce ghosts in the linearized approximation and become unstable, however, it also invalidates the approximation itself. Such a source creates a halo of variable curvature that locally dominates over the self-accelerated background and extends over a domain in which the linearization breaks down. Perturbations that are valid outside the halo may not continue inside, as it is suggested by some non-perturbative solutions. (4) In the Euclidean continuation of the theory, with arbitrary sources, we derive certain constraints imposed by the second order equations on first order perturbations, thus restricting the linearized solutions that could be continued into the full nonlinear theory. Naive linearized solutions fail to satisfy the above constraints. (5) Finally, we clarify in detail subtleties associated with the boundary conditions and analytic properties of the Green's functions.Comment: 39 LaTex page

    Mass Screening in Modified Gravity

    Full text link
    Models of modified gravity introduce extra degrees of freedom, which for consistency with the data, should be suppressed at observable scales. In the models that share properties of massive gravity such a suppression is due to nonlinear interactions: An isolated massive astrophysical object creates a halo of a nonzero curvature around it, shielding its vicinity from the influence of the extra degrees of freedom. We emphasize that the very same halo leads to a screening of the gravitational mass of the object, as seen by an observer beyond the halo. We discuss the case when the screening could be very significant and may rule out, or render the models observationally interesting.Comment: 16 pages, 4 figures, A contribution to the Proceedings of the International Workshop on Cosmology and Gravitation, Peyresq 12, June 16-22, 2007, Peyresq, Franc

    Cosmic Mimicry: Is LCDM a Braneworld in Disguise ?

    Full text link
    For a broad range of parameter values, braneworld models display a remarkable property which we call cosmic mimicry. Cosmic mimicry is characterized by the fact that, at low redshifts, the Hubble parameter in the braneworld model is virtually indistinguishable from that in the LCDM cosmology. An important point to note is that the \Omega_m parameters in the braneworld model and in the LCDM cosmology can nevertheless be quite different. Thus, at high redshifts (early times), the braneworld asymptotically expands like a matter-dominated universe with the value of \Omega_m inferred from the observations of the local matter density. At low redshifts (late times), the braneworld model behaves almost exactly like the LCDM model but with a renormalized value of the cosmological density parameter \Omega_m^{LCDM}. The redshift which characterizes cosmic mimicry is related to the parameters in the higher-dimensional braneworld Lagrangian. Cosmic mimicry is a natural consequence of the scale-dependence of gravity in braneworld models. The change in the value of the cosmological density parameter is shown to be related to the spatial dependence of the effective gravitational constant in braneworld theory. A subclass of mimicry models lead to an older age of the universe and also predict a redshift of reionization which is lower than z_{reion} \simeq 17 in the LCDM cosmology. These models might therefore provide a background cosmology which is in better agreement both with the observed quasar abundance at z \gsim 4 and with the large optical depth to reionization measured by the Wilkinson Microwave Anisotropy Probe.Comment: 22 pages, 4 figures. A subsection and references added; main results remain unchanged. Accepted for publication in JCA
    corecore