44 research outputs found

    Age Distribution of Multiple Functionally Relevant Subsets of CD4+T Cells in Human Blood Using a Standardized and Validated 14-Color EuroFlow Immune Monitoring Tube

    Get PDF
    CD4+ T cells comprise multiple functionally distinct cell populations that play a key role in immunity. Despite blood monitoring of CD4+ T-cell subsets is of potential clinical utility, no standardized and validated approaches have been proposed so far. The aim of this study was to design and validate a single 14-color antibody combination for sensitive and reproducible flow cytometry monitoring of CD4+ T-cell populations in human blood to establish normal age-related reference values and evaluate the presence of potentially altered profiles in three distinct disease models-monoclonal B-cell lymphocytosis (MBL), systemic mastocytosis (SM), and common variable immunodeficiency (CVID). Overall, 145 blood samples from healthy donors were used to design and validate a 14-color antibody combination based on extensive reagent testing in multiple cycles of design-testing-evaluation-redesign, combined with in vitro functional studies, gene expression profiling, and multicentric evaluation of manual vs. automated gating. Fifteen cord blood and 98 blood samples from healthy donors (aged 0-89 years) were used to establish reference values, and another 25 blood samples were evaluated for detecting potentially altered CD4 T-cell subset profiles in MBL (n = 8), SM (n = 7), and CVID (n = 10). The 14-color tube can identify >= 89 different CD4+ T-cell populations in blood, as validated with high multicenter reproducibility, particularly when software-guided automated (vs. manual expert-based) gating was used. Furthermore, age-related reference values were established, which reflect different kinetics for distinct subsets: progressive increase of naive T cells, T-helper (Th)1, Th17, follicular helper T (TFH) cells, and regulatory T cells (Tregs) from birth until 2 years, followed by a decrease of naive T cells, Th2, and Tregs in older children and a subsequent increase in multiple Th-cell subsets toward late adulthood. Altered and unique CD4+ T-cell subset profiles were detected in two of the three disease models evaluated (SM and CVID). In summary, the EuroFlow immune monitoring TCD4 tube allows fast, automated, and reproducible identification of >= 89 subsets of CD4+ blood T cells, with different kinetics throughout life. These results set the basis for in-depth T-cell monitoring in different disease and therapeutic conditions

    DataSheet_1_Development of a standardized and validated flow cytometry approach for monitoring of innate myeloid immune cells in human blood.zip

    Get PDF
    Innate myeloid cell (IMC) populations form an essential part of innate immunity. Flow cytometric (FCM) monitoring of IMCs in peripheral blood (PB) has great clinical potential for disease monitoring due to their role in maintenance of tissue homeostasis and ability to sense micro-environmental changes, such as inflammatory processes and tissue damage. However, the lack of standardized and validated approaches has hampered broad clinical implementation. For accurate identification and separation of IMC populations, 62 antibodies against 44 different proteins were evaluated. In multiple rounds of EuroFlow-based design-testing-evaluation-redesign, finally 16 antibodies were selected for their non-redundancy and separation power. Accordingly, two antibody combinations were designed for fast, sensitive, and reproducible FCM monitoring of IMC populations in PB in clinical settings (11-color; 13 antibodies) and translational research (14-color; 16 antibodies). Performance of pre-analytical and analytical variables among different instruments, together with optimized post-analytical data analysis and reference values were assessed. Overall, 265 blood samples were used for design and validation of the antibody combinations and in vitro functional assays, as well as for assessing the impact of sample preparation procedures and conditions. The two (11- and 14-color) antibody combinations allowed for robust and sensitive detection of 19 and 23 IMC populations, respectively. Highly reproducible identification and enumeration of IMC populations was achieved, independently of anticoagulant, type of FCM instrument and center, particularly when database/software-guided automated (vs. manual “expert-based”) gating was used. Whereas no significant changes were observed in identification of IMC populations for up to 24h delayed sample processing, a significant impact was observed in their absolute counts after >12h delay. Therefore, accurate identification and quantitation of IMC populations requires sample processing on the same day. Significantly different counts were observed in PB for multiple IMC populations according to age and sex. Consequently, PB samples from 116 healthy donors (8-69 years) were used for collecting age and sex related reference values for all IMC populations. In summary, the two antibody combinations and FCM approach allow for rapid, standardized, automated and reproducible identification of 19 and 23 IMC populations in PB, suited for monitoring of innate immune responses in clinical and translational research settings.Peer reviewe

    Impact of age and vaccination history on long-term serological responses after symptomatic B. pertussis infection, a high dimensional data analysis

    No full text
    Capturing the complexity and waning patterns of co-occurring immunoglobulin (Ig) responses after clinical B. pertussis infection may help understand how the human host gradually loses protection against whooping cough. We applied bi-exponential modelling to characterise and compare B. pertussis specific serological dynamics in a comprehensive database of IgG, IgG subclass and IgA responses to Ptx, FHA, Prn, Fim2/3 and OMV antigens of (ex-) symptomatic pertussis cases across all age groups. The decay model revealed that antigen type and age group were major factors determining differences in levels and kinetics of Ig (sub) classes. IgG-Ptx waned fastest in all age groups, while IgA to Ptx, FHA, Prn and Fim2/3 decreased fast in the younger but remained high in older (ex-) cases, indicating an age-effect. While IgG1 was the main IgG subclass in response to most antigens, IgG2 and IgG3 dominated the anti-OMV response. Moreover, vaccination history plays an important role in post-infection Ig responses, demonstrated by low responsiveness to Fim2/3 in unvaccinated elderly and by elevated IgG4 responses to multiple antigens only in children primed with acellular pertussis vaccine (aP). This work highlights the complexity of the immune response to this re-emerging pathogen and factors determining its Ig quantity and quality

    Impact of age and vaccination history on long-term serological responses after symptomatic B. pertussis infection, a high dimensional data analysis

    No full text
    Capturing the complexity and waning patterns of co-occurring immunoglobulin (Ig) responses after clinical B. pertussis infection may help understand how the human host gradually loses protection against whooping cough. We applied bi-exponential modelling to characterise and compare B. pertussis specific serological dynamics in a comprehensive database of IgG, IgG subclass and IgA responses to Ptx, FHA, Prn, Fim2/3 and OMV antigens of (ex-) symptomatic pertussis cases across all age groups. The decay model revealed that antigen type and age group were major factors determining differences in levels and kinetics of Ig (sub) classes. IgG-Ptx waned fastest in all age groups, while IgA to Ptx, FHA, Prn and Fim2/3 decreased fast in the younger but remained high in older (ex-) cases, indicating an age-effect. While IgG1 was the main IgG subclass in response to most antigens, IgG2 and IgG3 dominated the anti-OMV response. Moreover, vaccination history plays an important role in post-infection Ig responses, demonstrated by low responsiveness to Fim2/3 in unvaccinated elderly and by elevated IgG4 responses to multiple antigens only in children primed with acellular pertussis vaccine (aP). This work highlights the complexity of the immune response to this re-emerging pathogen and factors determining its Ig quantity and quality

    Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07

    No full text
    Alterations in protein post-translational modification (PTM) are recognized hallmarks of diseases. These modifications potentially provide a unique source of disease-related human leukocyte antigen (HLA) class I-presented peptides that can elicit specific immune responses. While phosphorylated HLA peptides have already received attention, arginine methylated HLA class I peptide presentation has not been characterized in detail. In a human B-cell line we detected 149 HLA class I peptides harboring mono- and/or dimethylated arginine residues by mass spectrometry. A striking preference was observed in the presentation of arginine (di)methylated peptides for HLA-B*07 molecules, likely because the binding motifs of this allele resemble consensus sequences recognized by arginine methyl-transferases. Moreover, HLA-B*07-bound peptides preferentially harbored dimethylated groups at the P3 position, thus consecutively to the proline anchor residue. Such a proline-arginine sequence has been associated with the arginine methyl-transferases CARM1 and PRMT5. Making use of the specific neutral losses in fragmentation spectra, we found most of the peptides to be asymmetrically dimethylated, most likely by CARM1. These data expand our knowledge of the processing and presentation of arginine (di)methylated HLA class I peptides and demonstrate that these types of modified peptides can be presented for recognition by T-cells. HLA class I peptides with mono- and dimethylated arginine residues may therefore offer a novel target for immunotherapy

    Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07.

    No full text
    Alterations in protein post-translational modification (PTM) are recognized hallmarks of diseases. These modifications potentially provide a unique source of disease-related human leukocyte antigen (HLA) class I-presented peptides that can elicit specific immune responses. While phosphorylated HLA peptides have already received attention, arginine methylated HLA class I peptide presentation has not been characterized in detail. In a human B-cell line we detected 149 HLA class I peptides harboring mono- and/or dimethylated arginine residues by mass spectrometry. A striking preference was observed in the presentation of arginine (di)methylated peptides for HLA-B*07 molecules, likely because the binding motifs of this allele resemble consensus sequences recognized by arginine methyl-transferases. Moreover, HLA-B*07-bound peptides preferentially harbored dimethylated groups at the P3 position, thus consecutively to the proline anchor residue. Such a proline-arginine sequence has been associated with the arginine methyl-transferases CARM1 and PRMT5. Making use of the specific neutral losses in fragmentation spectra, we found most of the peptides to be asymmetrically dimethylated, most likely by CARM1. These data expand our knowledge of the processing and presentation of arginine (di)methylated HLA class I peptides and demonstrate that these types of modified peptides can be presented for recognition by T-cells. HLA class I peptides with mono- and dimethylated arginine residues may therefore offer a novel target for immunotherapy

    A semi high-throughput whole blood-based flow cytometry assay to detect and monitor -specific Th1, Th2 and Th17 responses.

    No full text
    The characterization of B. pertussis (Bp) antigen-specific CD4+ T cell cytokine responses should be included in the evaluation of immunogenicity of pertussis vaccines but is often hindered by the lack of standardized robust assays

    Differential B-cell memory around the 11-month booster in children vaccinated with a 10- or 13-valent pneumococcal conjugate vaccine

    No full text
    BACKGROUND: Both the 10- and 13-valent pneumococcal conjugate vaccines (PCV10 and PCV13) induce immunological memory against Streptococcus pneumoniae infections caused by vaccine serotypes. In addition to comparing serum antibody levels, we investigated frequencies of serotype-specific plasma cells (PCs) and memory B-cells (Bmems) as potential predictors of long-term immunity around the booster vaccination at 11 months of age. METHODS: Infants were immunized with PCV10 or PCV13 at 2, 3, 4, and 11 months of age. Blood was collected before the 11-month booster or 7-9 days afterward. Serotype-specific immunoglobulin G (IgG) levels were determined in serum samples by multiplex immunoassay. Circulating specific PCs and Bmems against shared serotypes 1, 6B, 7F, and 19F and against PCV13 serotypes 6A and 19A were measured in peripheral blood mononuclear cells by enzyme-linked immunospot assay. RESULTS: No major differences in IgG levels and PC frequencies between groups were found for the 4 shared serotypes. Notably, PCV13 vaccination resulted in higher frequencies of Bmems than PCV10 vaccination, both before and after the booster dose, for all 4 shared serotypes except for serotype 1 postbooster. For PCV13-specific serotypes 6A and 19A, the IgG levels and frequencies of PCs and Bmems were higher in the PCV13 group, pre- and postbooster, except for PC frequencies prebooster. CONCLUSIONS: Both PCVs are immunogenic and induce measurable IgG, PC, and Bmem booster responses at 11 months. Compared to PCV10, vaccination with PCV13 was associated with overall similar IgG levels and PC frequencies but with higher Bmem frequencies before and after the 11-month booster. The clinical implications of these results need further follow-up. CLINICAL TRIALS REGISTRATION: NTR3069
    corecore