15 research outputs found

    CHARACTERISTICS OF SOIL ORGANIC MATTER IN ECTOHUMUS HORIZONS OF FOREST SOILS IN THE STO£OWE MOUNTAINS

    Get PDF
    This paper describes the fractional composition of humus substances and physico-chemical properties of ectohumus horizons in forest soils (Haplic Cambisols (Distric) and Albic Podzols) developed from various parent materials and in various forest sites: mountain mixed forest witch beech tree, spruce forest witch spruce monoculture, mountain mixed forest witch beech, sycamore maple and larch and mountain mixed forest witch spruce and larch. Reactions of the analyzed soils were strongly acidic. Organic C content was in the range of 21-48% and total N reached values between 0.68-1.63%. The fractional composition of humus substances was analyzed using the Tiurin method. Fraction Ia (extracted with 0.05 mol dm-1 H2SO4) constituted a rather insignificant part (1.03-3.63% of Corg) of humus compounds. Humus was dominated by fraction I (extracted with 0.1 mol·dm-1 NaOH) (27.4 - 42.5% of Corg). The ratio of CHA:CFA was within the range of 0.75-1.35 and increased in deeper organic subhorizons. Non-extracted C was within the range of 55.7-69.7% of Corg. In all the ectohumus samples investigated, the highest humification degree was found in the deepest organic subhorizon

    The quantitative changes of nutrients in two contrasting soils amended with sewage sludge compost evaluated by various statistical tools

    No full text
    Introduction: The application of organic fertilisers to replenish soil organic matter and improve soil fertility and productivity has become common agricultural practice. Aim of the study: This research deals with the effects of soil amendment with sewage sludge compost (SSC) on organic carbon, nitrogen total, nitrogen mineral and available P, K, S and Mg mineralisation in two contrasting soils. The various statistical tools used in this study have allowed us to present another conceptualisation of nutrient increments or losses as an effect of SSC applied. In order to distinguish groups of nutrients which are similar, a cluster analysis was used. A two-way analysis of variance was applied to compare the increments of the content of nutrients in the soils. Material and Methods: A 3-year pot experiment was conducted, employing a randomised, factorial design with two soils (light and medium) and one amendment treatment as a compost at a rate equivalent to 6 Mg ha−1. The following parameters of chemical soil properties were determined: contents of organic carbon (Corg), total nitrogen (Ntot), amounts of available P, K, Mg, S and mineral nitrogen (Nmin). Results: The SSC showed a similar influence on the fertility of both soils. It was affirmed that application of SSC results in a statistically significant increase in the contents of soil organic carbon. The amounts of total and mineral N, as well as available P and S were subjected to different patterns of quantity changes expressed by both increase and loss. Moreover, a statistically significant loss of available K amounts was observed in both soils. Conclusions: The findings of the study indicated that mature SSC becomes a long lasting fertiliser, slowly subjected to decomposition processes. Therefore, it may influence small increases in nutrient amounts in soils, in relation to the contents obtained for the control soil

    Does Soil Drying in a Lab Affect Arsenic Speciation in Strongly Contaminated Soils?

    No full text
    This study examined the changes in extractability and fractionation of arsenic (As) that can be caused by the drying of strongly polluted anoxic soil samples. Two untreated and manure-amended soils were incubated for 7 and 21 days in flooded conditions. Thereafter, As water- and 1 M NH4NO3-extractability and As fractionation in a 5-step sequential extraction according to Wenzel were examined in fresh, oven-dried and air-dried samples. Soil treatment with manure considerably affected the results of the sequential extraction. Air-drying caused a significant decrease in As extractability with 1 M NH4NO3 and in As concentrations in the F1 fraction. The highest reduction of extractability (30–41%) was found in manure-treated soils. Oven-drying resulted in a smaller reduction (5–34%) of As extractability. These effects were explained by opposing processes of As mobilization and immobilization. Sequential extraction did not allow for balancing As redistribution due to drying, as As loss from the F1 fraction was smaller than the confidence intervals in the other fractions. The results showed that for the precise determination of As extractability in anoxic soils, fresh samples should be analyzed. However, oven-dried samples may be used for a rough assessment of environmental risk, As the order of magnitude of easily soluble As did not change due to drying

    The Release of Antimony from Mine Dump Soils in the Presence and Absence of Forest Litter

    No full text
    This study examined the changes in antimony (Sb) solubility in soils, using organic matter introduced with forest litter, in various moisture conditions. Soils containing 12.8⁻163 mg/kg Sb were taken from the top layers of dumps in former mining sites in the Sudetes, South-West Poland. Soils were incubated for 90 days either in oxic or waterlogged conditions, with and without the addition of 50 g/kg of beech forest litter (FL). Water concentrations of Sb in some experimental treatments greatly exceeded the threshold values for good quality underground water and drinking water, and reached a maximum of 2.8 mg/L. The changes of Sb solubility caused by application of FL and prolonged waterlogging were, in various soils, highly divergent and in fact unpredictable based on the main soil properties. In some soils, the application of forest litter prompted the release of Sb from soil solid phase, while in the others it acted contradictorily. Soil waterlogging resulted, in most cases, in the increased release of Sb compared to oxic conditions, and this effect was enhanced by the addition of forest litter. However, in two soils the presence of forest litter counteracted the effects of waterlogging and diminished the quantities of released Sb

    Does Soil Drying in a Lab Affect Arsenic Speciation in Strongly Contaminated Soils?

    No full text
    This study examined the changes in extractability and fractionation of arsenic (As) that can be caused by the drying of strongly polluted anoxic soil samples. Two untreated and manure-amended soils were incubated for 7 and 21 days in flooded conditions. Thereafter, As water- and 1 M NH4NO3-extractability and As fractionation in a 5-step sequential extraction according to Wenzel were examined in fresh, oven-dried and air-dried samples. Soil treatment with manure considerably affected the results of the sequential extraction. Air-drying caused a significant decrease in As extractability with 1 M NH4NO3 and in As concentrations in the F1 fraction. The highest reduction of extractability (30–41%) was found in manure-treated soils. Oven-drying resulted in a smaller reduction (5–34%) of As extractability. These effects were explained by opposing processes of As mobilization and immobilization. Sequential extraction did not allow for balancing As redistribution due to drying, as As loss from the F1 fraction was smaller than the confidence intervals in the other fractions. The results showed that for the precise determination of As extractability in anoxic soils, fresh samples should be analyzed. However, oven-dried samples may be used for a rough assessment of environmental risk, As the order of magnitude of easily soluble As did not change due to drying

    Comparison of Total Content of Zinc and Arsenic in Soils of Średzka Upland and Wrocław Ice-Marginal Valley

    No full text
    The aim of this study was to demonstrate that alluvial sediments of Wrocław ice-marginal Valley are characterized by higher con-centrations of metallic elements in relation to the adjacent areas of different soil cover genesis

    Variability of soil properties in an intensively cultivated experimental field

    No full text
    The aim of the study was to determine whether long-term intensive cultivation that used variable ploughing and fertilisation technologies and schemes influences the differentiation of soil properties which may impact the results of growing experiments in a relatively small experimental field (0.1 ha). The field under study is located in Wrocław, in an agricultural experimental station that has been operating for more than 60 years. A transformation of rusty gleyic soils (Brunic Gleyic Arenosols) into anthropogenic black earths (Gleyic Phaeozems (Arenic)) was noticed. The content of organic carbon and nitrogen, pH and the content of exchangeable base cations in the plough layer were positively (statistically and spatially) correlated and their increased values were observed in soils with a deeper and darker plough level. The present differentiation of the physical and chemical properties of soils in the experimental field do not result from such primary soil-forming factors as a kind and texture of parent material, topography, moisture regime, or (micro-)climatic conditions, which are not differentiated within the field, but from various intensity of former cultivation on individual sections of the experimental field. The variability cśfficient of the crucial soil properties was found to exceed 30%, which might significantly influence the results of micro-plot vegetation experiments

    Ecological Parameters of Water Bodies in the Northern Part of the Upper Volga Region with River Flow Regulations

    No full text
    The regulation of river flow in the Volga basin has caused irreversible changes to aquatic ecosystems. The transformation of the Volga into a cascade of hydraulic structures with a non-flow regime has resulted in a decrease in depth and flow, and an increase in the temperature and concentration of chemical elements, which has induced the process of eutrophication. The change in the species diversity of aquatic organisms under conditions of intense eutrophication was studied on models of water bodies from the Volga basin; the Kostroma section of the Gorky reservoir (Kostroma spill and the middle river section), and lakes Galichskoe and Chukhlomskoe were studied. Rheophilic biocenosis was replaced by a limnophilic one, the migration paths of fish were disrupted, and population characteristics were changed. In accordance with environmental conditions, the level of primary production and the calculated Carlson trophic index (TSI) and Broth-proposed index (ITS) (1987), the water bodies of the northern part of the upper Volga region are classified as follows: the middle river section of the Gorky reservoir is mesotrophic-eutrophic (TSI = 55.2, ITS = 16.2); the Kostroma spill is eutrophic with a tendency to hypertrophy (TSI = 67.4, ITS = 6.8); Lake Galichskoe is eutrophic with a tendency to dystrophy (TSI = 63.2, ITS = 8.4), and Lake Chukhlomskoe is hypertrophic with a tendency to dystrophy (TSI = 77.4, ITS = 8.0). In addition, frequent fluctuations in water level, reaching 1 m, have had an adverse effect on inhabitants of the littoral zone including the spawning fish, which may lead to disappearance of some of the region’s most sensitive species
    corecore