1,077 research outputs found

    Taxol synthesis

    Get PDF
    Being a complex diterpenoid, the potent anticancer drug, Taxol, requires complicated steps for its biosynthesis. In the present article, recent advances on Taxol biosynthesis pathway are reviewed, including many recently reported genes that regulate Taxol biosynthesis. To meet the urgent need of clinic and scientific research, besides Taxus supply, other approaches to obtain Taxol have also been discussed here.Keywords: biosynthesis pathway, cell culture, endophytic fungi, Taxol, Taxu

    Dual CNN based channel estimation for MIMO-OFDM systems

    Get PDF
    Recently, convolutional neural network (CNN)-based channel estimation (CE) for massive multiple-input multiple-output communication systems has achieved remarkable success. However, complexity even needs to be reduced, and robustness can even be improved. Meanwhile, existing methods do not accurately explain which channel features help the denoising of CNNs. In this paper, we first compare the strengths and weaknesses of CNN-based CE in different domains. When complexity is limited, the channel sparsity in the angle-delay domain improves denoising and robustness whereas large noise power and pilot contamination are handled well in the spatial-frequency domain. Thus, we develop a novel network, called dual CNN, to exploit the advantages in the two domains. Furthermore, we introduce an extra neural network, called HyperNet, which learns to detect scenario changes from the same input as the dual CNN. HyperNet updates several parameters adaptively and combines the existing dual CNNs to improve robustness. Experimental results show improved estimation performance for the time-varying scenarios. To further exploit the correlation in the time domain, a recurrent neural network framework is developed, and training strategies are provided to ensure robustness to the changing of temporal correlation. This design improves channel estimation performance but its complexity is still low

    Shifts and widths of collective excitations in trapped Bose gases by the dielectric formalism

    Full text link
    We present predictions for the temperature dependent shifts and damping rates. They are obtained by applying the dielectric formalism to a simple model of a trapped Bose gas. Within the framework of the model we use lowest order perturbation theory to determine the first order correction to the results of Hartree-Fock-Bogoliubov-Popov theory for the complex collective excitation frequencies, and present numerical results for the temperature dependence of the damping rates and the frequency shifts. Good agreement with the experimental values measured at JILA are found for the m=2 mode, while we find disagreements in the shifts for m=0. The latter point to the necessity of a non-perturbative treatment for an explanation of the temperature-dependence of the m=0 shifts.Comment: 10 pages revtex, 3 figures in postscrip

    Properties of excitations in systems with a spinor Bose-Einstein condensate

    Full text link
    General theory in case of homogenous Bose-Einstein condensed systems with spinor condensate is presented for the correlation functions of density and spin fluctuations and for the one-particle propagators as well. The random phase approximation is investigated and the damping of the modes is given in the intermediate temperature region. It is shown that the collective and the one-particle excitation spectra do not coincide fully.Comment: 5 pages, 1 figur

    Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability

    Get PDF
    This document is the Accepted Manuscript version of the following article: Dian-Wu Yue, and Yichuang Sun, ‘Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability’, Wireless Personal Communications, Vol. 90 (4): 1951-1970, first available online on 20 June 2016. Under embargo. Embargo end date: 20 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs11277-016-3432-4This paper is concerned with a wireless multiple-antenna system operating in multiple-input multiple-output (MIMO) fading channels with channel state information being known at both transmitter and receiver. By spatiotemporal subchannel selection and power control, it aims to minimize the average transmit power (ATP) of the MIMO system while achieving an exponential type of average bit error rate (BER) for each data stream. Under the constraints on each subchannel that individual outage probability and average BER are given, based on a traditional upper bound and a dynamic upper bound of Q function, two closed-form ATP expressions are derived, respectively, which can result in two different power allocation schemes. Numerical results are provided to validate the theoretical analysis, and show that the power allocation scheme with the dynamic upper bound can achieve more power savings than the one with the traditional upper bound.Peer reviewe

    Intracisternal administration of NR2 subunit antagonists attenuates the nociceptive behavior and p-p38 MAPK expression produced by compression of the trigeminal nerve root

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated the role of the central NMDA receptor NR2 subunits in the modulation of nociceptive behavior and p-p38 MAPK expression in a rat model with compression of the trigeminal nerve root. To address this possibility, changes in air-puff thresholds and pin-prick scores were determined following an intracisternal administration of NR2 subunit antagonists. We also examined effects of NR2 subunit antagonists on the p-p38 MAPK expression.</p> <p>Results</p> <p>Experiments were carried out using male Sprague-Dawley rats weighing (200-230 g). Compression of the trigeminal nerve root was performed under pentobarbital sodium (40 mg/kg) anesthesia. Compression of the trigeminal nerve root produced distinct nociceptive behavior such as mechanical allodynia and hyperalgesia. Intracisternal administration of 10 or 20 ÎŒg of D-AP5 significantly increased the air-puff threshold and decreased the pin-prick scores in a dose-dependent manner. The intracisternal administration of PPPA (1, 10 ÎŒg), or PPDA (5, 10 ÎŒg) increased the air-puff threshold and decreased the pin-prick scores ipsilateral as well as contralateral to the compression of the trigeminal root. Compression of the trigeminal nerve root upregulated the expression of p-p38 MAPK in the ipsilateral medullary dorsal horn which was diminished by D-AP5, PPPA, PPDA, but not Ro25-6981.</p> <p>Conclusions</p> <p>Our findings suggest that central NMDA receptor NR2 subunits play an important role in the central processing of trigeminal neuralgia-like nociception in rats with compression of the trigeminal nerve root. Our data further indicate that the targeted blockade of NR2 subunits is a potentially important new treatments strategy for trigeminal neuralgia-like nociception.</p

    Relativistic quantum transport theory of hadronic matter: the coupled nucleon, delta and pion system

    Full text link
    We derive the relativistic quantum transport equation for the pion distribution function based on an effective Lagrangian of the QHD-II model. The closed time-path Green's function technique, the semi-classical, quasi-particle and Born approximation are employed in the derivation. Both the mean field and collision term are derived from the same Lagrangian and presented analytically. The dynamical equation for the pions is consistent with that for the nucleons and deltas which we developed before. Thus, we obtain a relativistic transport model which describes the hadronic matter with NN, Δ\Delta and π\pi degrees of freedom simultaneously. Within this approach, we investigate the medium effects on the pion dispersion relation as well as the pion absorption and pion production channels in cold nuclear matter. In contrast to the results of the non-relativistic model, the pion dispersion relation becomes harder at low momenta and softer at high momenta as compared to the free one, which is mainly caused by the relativistic kinetics. The theoretically predicted free πN→Δ\pi N \to \Delta cross section is in agreement with the experimental data. Medium effects on the πN→Δ\pi N \to \Delta cross section and momentum-dependent Δ\Delta-decay width are shown to be substantial.Comment: 66 pages, Latex, 12 PostScript figures included; replaced by the revised version, to appear in Phys. Rev.

    Sub-10 nm transparent all-around-gated ambipolar ionic field effect transistor

    Get PDF
    In this paper, we developed a versatile ionic field effect transistor (IFET) which has an ambipolar function for manipulating molecules regardless of their polarity and can be operated at a wide range of electrolytic concentrations (10(-5) M-1 M). The IFET has circular nanochannels radially covered by gate electrodes, called "all-around-gate", with an aluminum oxide (Al2O3) oxide layer of a near-zero surface charge. Experimental and numerical validations were conducted for characterizing the IFET. We found that the versatility originated from the zero-charge density of the oxide layer and all-around-gate structure which increased the efficiency of the gate effect 5 times higher than a previously developed planar-gate by capacitance calculations. Our numerical model adapted Poisson-Nernst-Planck-Stokes (PNPS) formulations with additional nonlinear constraints of a fringing field effect and a counter-ion condensation and the experimental and numerical results were well matched. The device can control the transportation of ions at concentrations up to 1 M electrolyte which resembles a backflow of a shale gas extraction process. Furthermore, while traditional IFETs can manipulate either positively or negatively charged species depending on the inherently large surface charge of oxide layer, the presenting device and mechanism provide effective means to control the motion of both negatively and positively charged molecules which is important in biomolecule transport through nanochannels, medical diagnosis system and point-of-care system, etc.open112222sciescopu

    Detection of hepatitis B virus markers using a biosensor based on imaging ellipsometry

    Get PDF
    A biosensor based on imaging ellipsometry (BIE) has been developed and validated in 169 patients for detecting five markers of hepatitis B virus (HBV) infection. The methodology has been established to pave the way for clinical diagnosis, including ligand screening, determination of the sensitivity, set-up of cut-off values (CoVs) and comparison with other clinical methods. A matrix assay method was established for ligand screening. The CoVs of HBV markers were derived with the help of receiver operating characteristic curves. Enzyme-linked immunosorbent assay (ELISA) was the reference method. Ligands with high bioactivity were selected and sensitivities of 1 ng/mL and 1 IU/mL for hepatitis B surface antigen (HBsAg) and surface antibody (anti-HBs) were obtained respectively. The CoVs of HBsAg, anti-HBs, hepatitis B e antigen, hepatitis B e antibody and core antibody were as follows: 15%, 18%, 15%, 20% and 15%, respectively, which were the percentages over the values of corresponding ligand controls. BIE can simultaneously detect up to five markers within 1 h with results in acceptable agreement with ELISA, and thus shows a potential for diagnosing hepatitis B with high throughput
    • 

    corecore