
1

Dual CNN based Channel Estimation for
MIMO-OFDM Systems

Peiwen Jiang, Chao-kai Wen, Member, IEEE, Shi Jin, Senior Member, IEEE,
and Geoffrey Ye Li, Fellow, IEEE

Abstract—Recently, convolutional neural network (CNN)-
based channel estimation (CE) for massive multiple-input
multiple-output communication systems has achieved remarkable
success. However, complexity even needs to be reduced, and
robustness can even be improved. Meanwhile, existing methods
do not accurately explain which channel features help the
denoising of CNNs. In this paper, we first compare the strengths
and weaknesses of CNN-based CE in different domains. When
complexity is limited, the channel sparsity in the angle-delay
domain improves denoising and robustness whereas large noise
power and pilot contamination are handled well in the spatial-
frequency domain. Thus, we develop a novel network, called dual
CNN, to exploit the advantages in the two domains. Furthermore,
we introduce an extra neural network, called HyperNet, which
learns to detect scenario changes from the same input as the
dual CNN. HyperNet updates several parameters adaptively
and combines the existing dual CNNs to improve robustness.
Experimental results show improved estimation performance for
the time-varying scenarios. To further exploit the correlation
in the time domain, a recurrent neural network framework
is developed, and training strategies are provided to ensure
robustness to the changing of temporal correlation. This design
improves channel estimation performance but its complexity is
still low.

Index Terms—Deep learning, CNN, RNN, MIMO, channel
estimation, robustness.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) sys-
tems have been widely used for high-data-rate trans-

mission where the base stations (BSs) equipped with multiple
antennas can serve multiple users simultaneously at the same
frequency bands [1]. For massive MIMO systems, channel
estimation (CE) is critical to exploit the full benefit and the
accuracy of CE directly affects the performance of MIMO
systems. However, its accuracy is limited by pilot resources,
complexity, and interference. For example, the performance of
least-square (LS) estimation is poor under low signal-to-noise
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ratio (SNR) whereas minimum mean-squared error (MMSE)
CE needs complicated large matrix operations. Some robust
and low complex MMSE-CE methods [2], [3] cannot perform
well for channels with long delay spread and interference.

Deep learning (DL) can improve CE performance, espe-
cially in extreme environments [4]–[11]. At the outset, end-
to-end deep fully connected networks [5] outperform conven-
tional MMSE estimation under insufficient pilots and nonlinear
distortion. A deep autoencoder-based CE [8] is designed for
the wireless energy transfer system due to its superiority
under nonlinear and nonconvex problems. DL-based receivers
can also be applied to systems with low-resolution analog-
to-digital converters [9], [10], [12] and limited radio fre-
quency chains [13]. Decision-directed channel estimation can
be enhanced by DNNs [14], [15] in time-varying channels.
In [16], the pilot design and CE are optimized jointly to
cope with a condition in which the pilot length is less than
the number of antennas of all user terminals. In addition,
CE networks can be jointly designed with beamforming [17]
and precoding [18]. However, an end-to-end communication
system is usually challenging to train jointly because the
unknown channel truncates the gradient calculation. In [19],
generative adversarial networks have been used to learn the
channel effects; thus, the transmitter and the receiver are
connected by the generative network. In [20], the labeled
direction of arrival helps the offline and online training.
Some novel architectures [7], [21], [22], called model-driven
methods, combine DL with expert knowledge to reduce the
training data and computation resources requirements. The
low-complex frameworks in [23], [24] and the meta-learning
frameworks in [25], [26] significantly reduce required training
resources for online adjustment.

Convolutional neural networks (CNNs) have a great poten-
tial to exploit the correlation of the adjacent elements of chan-
nels in the spatial, time, and frequency domains. This CNN-
based CE [27] outperforms the traditional MMSE method.
The CNN in the spatial-frequency (SF) domain (referred to
as SF-CNN) [28] can obtain better estimation performance
for mmWave MIMO systems but with lower complexity than
the traditional MMSE method. In [29], an untrained CNN has
been applied to denoise the channels with pilot contamination
because CNNs easily recover a 3-D channel from a smaller
input of randomly chosen input tensor by compressing the
correlated channels. The sparsity of channels in a transform-
domain is a crucial feature, which motivates the employment
of compressive sensing approaches [30]. Recently, this feature
has been exploited to CNN-based CE [31] and channel state
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information feedback [32].
In this work, we demonstrate the advantages of denoising

for CNN-based CE in the SF and AD domains. However,
the decreased trainable parameters and complexity inevitably
limit the receptive field in the CNN [33], thus aggravating
estimation performance. Therefore, we propose a novel ar-
chitecture called dual CNN to exploit the channel features
in both domains. Through noise analysis, we understand the
mechanism of the CNNs and develop a new framework and
training strategy, called hyper dual CNN, to improve robust-
ness. Furthermore, by exploiting the time domain correlation,
the proposed work is further enhanced with a recurrent neural
network (RNN).

The major contributions of this paper are summarized as
follows:

1) To reduce the complexity, a new architecture, called dual
CNN, is proposed by connecting the CNNs in the SF and
AD domains. We compare the dual CNN performance with
CNN-based CE in the SF and AD domains, called SFCNN
and ADCNN, respectively, and find that ADCNN outperforms
SFCNN when SNR is high, whereas SFCNN is more robust
to the change of SNR. The dual CNN always performs better
than the CNN-based CE in any single domain when their
complexities are similar.

2) To improve the robustness, we develop a novel network
called HyperNet, which adaptively detects the LS estima-
tion scenario. The novel framework called hyper dual CNN
consists of several SFCNNs, an ADCNN, and a HyperNet.
This framework uses HyperNet to combine the existing CNNs
to cope with the time-varying environment; thus, it requires
no online training and has better performance under trained
scenarios than networks without the HyperNet. Meanwhile,
the feasibility under untrained scenarios is also guaranteed.

3) We further enhance the dual CNN by exploiting the
temporal correlation through the RNN architecture. The pro-
posed work, called dual RNN, directly exploits the correlation
between blocks without demodulating the correlative blocks
together. Specifically, this network uses the trained dual CNN
as initialization, and a simple CNN called TimeNet is added
to deliver the information from the previous blocks, which
improves estimation performance but remains low complexity.

The rest of this paper is organized as follows. Section
II introduces the system model, including conventional CE
algorithms and classic DL-based CE architectures. The pro-
posed networks are presented in Section III. In Section IV,
we demonstrate the superiority of the proposed networks in
terms of estimation performance, robustness, and complexity.
Section V concludes this paper.

II. SYSTEM MODEL

After introducing the multiuser MIMO-OFDM system and
conventional CE methods, we present the existing AI-aided
channel estimators, including DNN- and CNN-based CE in
this section. Besides, we analyze the complexity of the current
methods and introduce some techniques to improve robustness.

A. Multiuser MIMO-OFDM System

We consider a BS with M antennas serving Nue users, each
with a single antenna. OFDM modulation with K subcarriers
is used. The length of the transmit pilot sequence is P. The
received signal at the k-th subcarrier of the BS is

Yk =

Nue∑
n=1

√
ρn,khn,k ⊗ x∗n,k + Z, (1)

where the channel between the BS and the n-th user, hn,k ∈

CM×1, is constant over P time slots by virtue of block fading,
xn,k ∈ CP×1 is the transmit pilot, ρn,k is the transmit power, ⊗
and (·)∗ represent Kronecker product and Hermitian transpose
and Z ∈ CM×P denotes the white Gaussian noise. To estimate
the channel, the pilot sequence is orthogonal among different
users from the same BS, yielding

x∗n1,kxn2,k =

{
P, n1 = n2

0, n1 , n2
. (2)

Then, LS-CE can be expressed as

ĥn,k,LS =
1

√
ρn,kP

Ykxn,k, (3)

In the subsequent discussion, we denote the true and the
estimated channels of the n-th user at all subcarriers as Hn,LS
and Ĥn,LS ∈ C

M×K , respectively. However, the pilot sequences
of the users from different BSs are not orthogonal, which leads
to pilot contamination.

LS estimation exploits no channel statistics. It has low
complexity but poor performance. MMSE-CE improves per-
formance by using the channel correlation in time, frequency,
and antennas. Here, we assume that the channel is static
within an OFDM block. For convenience, the M × K matrix
is converted into an MK × 1 channel vector by concatenating
the columns, yielding

ĥn,LS = vec
(
Ĥn,LS

)
, (4)

where ĥn,LS ∈ C
MK×1. The linear MMSE (LMMSE) estima-

tion of the channel vector is

ĥn,LMMSE = R
(
R + σ2IMK

)−1
ĥn,LS =WLMMSEĥn,LS, (5)

where σ2 denotes noise power and R ∈ CMK×MK is the
autocorrelation matrix of subcarriers and BS antennas, which
is expressed as the expectation of the true channel vector
R = E(hnh∗n) but usually obtained by time-averaging or
according to channel models [34] in practice. Since the
matrix multiplication requires O

(
(MK)2

)
scalar operations,

the MMSE estimator is much more complicated than the LS
estimator. Moreover, WLMMSE may need to be updated along
with the change of scenarios where matrix inversion requires
O

(
(MK)3

)
multiplications. Here, the spatial correlation of the

users is ignored. Otherwise, the matrix multiplication requires
O

(
(MK)2N

)
scalar operations for each user, where N is the

number of correlative user antennas.
To simplify the LMMSE estimator, the max delay of the

channels, lmax, is assumed offline and the correlation in an-
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tennas is ignored. The robust LMMSE estimation at the n-th
user and the m-th antenna (ĥn,m,RLMMSE ∈ C

K×1) can easily
be calculated by the fast Fourier transform (FFT) because the
correlation in the frequency domain, R f = E(hn,mh∗n,m), can
be eigendecomposed [3] into

R f = DE(h̃n,mh̃∗n,m)D∗ = D
( 1

lmax
Ilmax 0
0 0

)
D∗, (6)

where D can be approximated by the K × K discrete Fourier
transform (DFT) matrix [2] and h̃n,m is the true channel in
the delay domain at the n-th user and the m-th antenna. The
robust LMMSE estimation is expressed as

ĥn,m,RLMMSE = R f

(
R f + σ

2IK
)−1

ĥn,m,LS

=WRLMMSEĥn,m,LS.
(7)

As a result, the complexity of the robust LMMSE estimation
for each user is reduced to O (MK log K). In the following, it
is denoted as RLMMSE.

Compared with LMMSE, RLMMSE is less complicated but
performs worse because RLMMSE does not exploit the spatial
correlation and assumes that the power in the delay domain
distributes uniformly.

B. DL-based CE

In Fig. 1(a), the estimated channel using the classic fully
connected DNN can be written as

ĥn,DNN =WL · · · β
(
W2β

(
W1ĥn,LS + b1

)
+ b2

)
· · ·+bL, (8)

where Wi and bi denote the real multiplicative parameter
matrix and the additive parameter vector for the i-th hidden
layer, and β(·) is a nonlinear activation function. For fully-
connected DNN-based CE, the sizes of Wi and bi increase
with the numbers of antennas and subcarriers. The complexity
of this architecture is larger than O((MK)2). The DL-based
receiver reveals its superiority for extreme scenarios, such
as insufficient pilots and nonlinear interference. However,
complexity is the key restriction to many applications of DL
in wireless communications. Moreover, too many trainable
parameters are difficult to train and update with the change
of scenarios. Thus, CNN-based receivers are used to simplify
the architecture.

In Fig. 1(b), the CE module is usually designed as a
CNN-based denoiser, where the channels are regarded as
two-dimensional pictures with frequency and antennas as
height and width, respectively. Therefore, the complexity is
O(

∑L
i=1(cMKNi−1Ni)), where Ni denotes the number of filters

in the i-th layer, the filter size is c. The input of the i-th
layer is (M,K, Ni−1), which means this input matrix has three
dimensions with the sizes M , K , Ni−1, respectively.

Transfer learning is a common method for adapting the
trained network to a new environment. According to [23]–
[26], we can either reduce trainable parameters or exploit
novel training strategies to save pilot resources online. Some
architectures [35], [36] can adjust themselves without online
transfer learning. The SNR feedback is utilized in [35] while
an extra DNN, called hyper-net, to adjust all the trainable

Fully 

connected

(a)

Conv

Connection

(b)

Fig. 1. (a) DNN-based CE. The channels are converted to a
vector, and the correlation is fully utilized. (b) CNN-based
CE. The channels are considered images, and the correlation
of adjacent elements is more important.

weights in [36]. We take the DNN-based CE as an example
to describe the architecture of hyper-net. For convenience, the
process of a neural network is denoted as a function f (a; b)
in the following, where a is the input of the network and b
contains all the trainable parameters of the network. Thus, Eq.
(8) is rewritten as

ĥn,DNN = fDNN (̂hn,LS; W), (9)

where W denotes [W1, · · · ,WL; b1, · · · , bL], fDNN(·; ·) is the
process of the DNN-based CE. Then, a hyper-net is used to
generate W with some key parameters as an input. The process
is expressed as

W = fhyper−net(lmax, σ
2, · · · ; W′), (10)

where W′ denotes the trainable parameters in hyper-net. Thus,
the entire process is

ĥn,DNN = fDNN (̂hn,LS; fhyper−net(lmax, σ
2, · · · ; W′)). (11)

After W′ is trained, the original trainable parameters, W,
are controlled by the key parameters, such as lmax and σ2.
These key parameters are provided by the user, which is more
convenient compared with retraining W online.

C. Existing Challenges

1) High complexity: For the two classic DL-based CE
methods mentioned above, the CNN has fewer trainable pa-
rameters, but their complexity remains large unless the filter
size c and the hidden layer size Ni are reduced. For example,
in [27], the CNN with several hidden layers of 64 3× 3 filters
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is applied to interpolation and denoising after LS-CE, where
the input of the CNN is with 72 subcarriers and 14 time
slots. This architecture exploits the correlation in the time and
frequency domains; thus, the complexity of one hidden layer
is O(9×14×72×64×64). This CNN is much more complicated
than the LMMSE without online updating (O((72×14)2)) and
is larger than a couple of fully-connected layers.

2) Robustness without online training: Online training for
DL-based CE and online updating for LMMSE are difficult
due to substantial computational complexity and data require-
ments. CE networks are difficult to be enhanced by the hyper-
net in Eq. (11) because its improvement is unstable if the key
parameters cannot be obtained accurately and W is large. Self-
attention architecture [37] has great potential because it learns
to concentrate on the essential parts automatically. Although
self-attention architecture is too complicated and cannot be
chosen to expand the dual CNN, it still inspires us to combine
several parallel networks trained under different scenarios with
a weight vector; thus, the proposed network can pay attention
to scenarios changing.

In this paper, we aim to simplify the CNN-based CE and
develop a robust architecture without any online training.

III. CE BASED ON DUAL CNN ARCHITECTURE

In this section, the basic network is expanded, and a novel
framework called HyperNet is introduced for online adaption.
The simple RNN architecture is added to exploit temporal
correlation further.

A. Basic Dual CNNs

To reduce computational complexity, the number of filters in
the hidden layers should decrease; as a result, the network can
only learn limited features. The small filter size and few hidden
layers restrict receptive fields; thus, some global features of the
channels are ignored.

Since channel matrix HSF ∈ C
M×K in the SF domain

displays its correlation at adjacent subcarriers and antennas,
the CNN denoiser in the image process is usually effective.
Meanwhile, the channel can be easily converted to the AD
domain by DFT. The frequency domain can be converted to
the delay domain through inverse DFT (IDFT) and the spatial
domain can be converted to angle domain through DFT [38],
yielding

HAD = D(HSF) = DMHSFD∗K, (12)

where DK is a K × K DFT matrix, DM is an M × M DFT
matrix. This domain transform process and its inverse process
are denoted as D(·) and D−1(·), respectively. The channel
matrix in the AD domain, HAD ∈ C

M×K , is sparse because
the channel paths only spread in a limited area. The two
domains have different features, which have been exploited
to design a conventional channel estimator and a DNN-based
estimator. By contrast, CNN focuses on the local features and
cannot learn the two different features adequately from only
one domain.

To solve the above issues, a dual CNN architecture, as
shown in Fig. 2, is proposed. The domain transform processes,

D(·) and D−1(·), are introduced to help the network learn from
different domains. This design combines the CNN and expert
knowledge in wireless communications. Dual CNN remains
low complexity by using a few 3 × 3 filters and only two
hidden layers. To compensate for the performance loss, the
CNN denoisers in the two domains, denoted as SFCNN and
ADCNN, are connected. The input size is (M,K, 2N), where
the complex value is converted to real in the third dimension
and N is the number of the transmission antennas of the users.
For example, if N user antennas are correlative, they should
be inputted together to exploit the spatial correlation. If N=1,
the real part and the imaginary part of Ĥn,LS in Section II are
concatenated in the third dimension to form the real matrix
ĤLS. In the figure, the first two convolutions in the SF domain
use 8N filters and the leaky ReLU activation function. The last
convolution has 2N filters without an activation function. The
output size of the SFCNN is (M,K, 2N), and a skip connection
adds the input to the output [39], which can be formulated as

ĤSF = fCNN(ĤLS;θSF) + ĤLS, (13)

where θSF denotes the trainable parameters in the SFCNN and
fCNN(·) represents the CNN processes. The ADCNNs have the
same architecture, and its input is the transformed output of
the SFCNN. The ADCNN in Fig. 2 further exploits channel
features in the AD domain to improve estimation performance.

The output of SFCNN, ĤSF, is first converted into the AD
domain using D(·). Next, a CNN denoted as fCNN(·;θAD) is
used to exploit channel features in the AD domain. Thus, the
estimated channel, Ĥ, in Fig. 2 can be expressed as

Ĥ = D−1( fCNN(D(ĤSF);θAD) + D(ĤSF)), (14)

where θAD denotes the trainable parameters in the ADCNN.
The loss function is the mean-squared error, that is,

(θ̂SF, θ̂AD) = arg min
θSF,θAD

| |H − Ĥ| |22 . (15)

When N=1, the complexity of the hidden layer in the
SFCNN is O(32MK(2 × 8 + 8 × 8 + 8 × 2)). The two FFTs
in the network cost O(2 × (MKlogK + K MlogM)). Thus,
the total complex multiplicative operations for each user is
O(8 × (108 × MK + MKlogK + K MlogM)). The dual CNN
estimator in Fig. 2 has lower complexity than LMMSE. When
K is large, the dual CNN in Fig. 2 is even simpler than
RLMMSE.

Dual CNN adopts two CNN denoisers in the two domains
to learn additional channel features with low complexity.
However, robustness is still a problem because the architecture
cannot update itself if the scenario changes.

B. Hyper Dual CNN

In contrast to the deep unfolding network with a hyper-net in
[40], dual CNN has at least thousands of trainable parameters
to adapt. Meanwhile, some environment information, such as
exact channel statistical state and noise power, which requires
extra computation, will not be considered. Thus, we use an
extra network to combine the parallel networks trained under
different scenarios with the input of LS-CE. In the following,
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Fig. 2. Structure of a dual CNN, which contains an ADCNN and a SFCNN. The two CNNs are connected by DFT process.

SFCNN 1

SFCNN 2

SFCNN 3

a1

a2

a3

+ ADCNN

3*3 conv&LRelu &  

downsampling

Fully connected & 

sigmoid 

HyperNet

Skip connection

Fig. 3. Structure of a hyper dual CNN, which contains a
HyperNet, several SFCNNs, and one ADCNN.

the three different scenarios in a spatial channel model (SCM)
are considered an example.

Fig. 3 shows the structure of the hyper dual CNN. In
the figure, additional SFCNNs are used for adaptation and
HyperNet is designed as a classifier, which is stable under the
noisy input because it only has few output parameters. SFCNN
is affected more than ADCNN when the scenario changes due
to sparsity in the AD domain. Therefore, most areas in the
AD domain are only with noise power, and thus the ADCNN
can remove a large part of the noise without the effect of
the varying channels. On the contrary, noise and channel are
added in the SF domain and the channel correlation is vitally
important for the SFCNN denoiser.

The input of HyperNet is LS-CE, which is (M,K, 2N) in
real form. Then, the input is convoluted by 3 × 3 filters and
doubled in the third dimension, and the activation function
is ReLU. The downsampling process reduces the first two
dimensions to half. The convolution and downsampling are
repeated twice. In the end, a fully connected layer is used to
output three parameters, and the sigmoid function limits the
output from 0 to 1. The three output parameters are multiplied
to the output of SFCNNs and control the contributions of the
different SFCNNs. The process of HyperNet and trainable

parameters are denoted as fhyper(·) and θhyper, respectively.
The output consists of three parameters α = [α1, α2, α3], each
representing a scenario, and can be expressed as

α = fhyper(ĤLS;θhyper). (16)

Then, based on Eq. (14), the output of the hyper dual CNN
can be written as

Ĥ = D−1

(
fCNN

(
D

( 3∑
i=1

αiĤi
SF

)
;θAD

)
+ D

( 3∑
i=1

αiĤi
SF

))
,

(17)
where Ĥi

SF denotes the output of the i-th SFCNN.
In order to make the hyper dual CNN robust, three training

steps are performed.
1) The ADCNN is trained first without the SFCNNs under

an entire training set, where the channels from three main
scenarios are mixed. The training process is formulated as

θ̂AD = arg min
θAD

| |D−1( fCNN(D(ĤLS);θAD) + D(ĤLS)) −H| |22 .

(18)
The end-to-end training is beneficial to improve perfor-

mance when the training and the test scenarios are the same. In
the same scenario, the ADCNN can better detect the channel
power after the denoising of the SFCNN. However, training the
CNNs together means the ADCNN relies on the pre-denoising
in the SF domain. So, we train the ADCNN independently with
the LS-CE input to improve the performance under untrained
scenarios where SFCNNs may not work.

2) The SFCNNs are trained for three main scenarios suc-
cessively. In this way, we obtain three SFCNNs, which can
improve the performance if the test and the training scenarios
are matched. However, the SFCNNs have poor robustness. The
entire training process is expressed as

θ̂iSF = arg min
θi

SF

| |D−1( fCNN(D(Ĥi
SF); θ̂AD) + D(Ĥi

SF)) −H| |22,

(19)
where θiSF is the trainable parameters of the i-th SFCNN.

3) HyperNet with LS estimation as input is trained to output
α, and other parameters are fixed. After training, HyperNet
can be considered as a recognizer because it outputs different
α under different scenarios, which combines the SFCNNs
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Fig. 4. Architecture of the dual RNN. (a) Overview of the
RNN. (b) Details of TimeNet.

to adapt to scenario changes. The training process can be
expressed as

θ̂hyper = arg min
θhyper

| |H − Ĥ| |22 . (20)

After completing the training process offline, the hyper
dual CNN is ready to work without any online training. This
architecture can perform better than the dual CNN under the
three scenarios. More importantly, it can still work under
untrained scenarios due to the combination of the SFCNNs
and the robust design of the ADCNN.

C. Dual RNN

In addition to antennas and frequency, temporal correlation
of channel state information among adjacent OFDM blocks
can be exploited to improve CE further. Here, the channels in
an OFDM block are assumed to be static and T contiguous
OFDM blocks are correlated. MMSE estimation, which max-
imizes spatial, frequency, and temporal correlations, should
collect the pilots in the T blocks and calculate them together.

A simple CNN called TimeNet is added to extract the
correlation feature among OFDM blocks. The proposed ar-
chitecture, called dual RNN1, consists of dual CNNs and
TimeNets at different blocks. These networks are connected as

1We choose the classic RNN rather than LSTM or GRU because this study
concentrates on low complexity and the proposed dual RNN is a combination
of the CNNs. Meanwhile, the temporal correlation coefficient of the channels
usually decreases with time, where long-term memory may not be effective.

shown in Fig. 4(a). Here, two matrices at the i-th block, TNSF,i
and TNAD,i , are introduced to store temporal information in
the SF and the AD domains from the previous OFDM blocks.
The two matrices are delivered by the TimeNet. The temporal
information at the first dual CNN directly utilizes the LS-
CE in the previous time slot in the SF and AD domains as
initialization, i. e., TNSF,1 = ĤLS,0 and TNAD,1 = D(ĤLS,0).

The dual CNN at the i-th block is changed to exploit TNSF,i
and TNAD,i . They are concatenated with the input of SFCNN
and ADCNN. Thus, the output of SFCNN of the dual CNN
at the i-th block is

ĤSF,i = fCNN′([ĤLS,i,TNSF,i];θSF, θ
′
SF) + ĤLS,i, (21)

where fCNN′(·) represents the CNN process in the changed dual
CNN and θ′SF denotes the extra trainable parameters because
the size of the input layer in the third dimension is doubled and
the trainable parameters in the filters of the first convolution
is also doubled. For example, if the size of the input ĤLS,i
is (M,K, 2) and thus that of [ĤLS,i,TNSF,i] is (M,K, 4), the
size of the eight 3× 3 filters in the first layer of CNN process
fCNN(·) is (3, 3, 2) and that of fCNN′(·) is (3, 3, 4). ADCNN is
revised similarly, yielding

Ĥi = D−1( fCNN′([D(ĤSF,i),TNAD,i];θAD, θ
′
AD) + D(ĤSF,i)).

(22)
The trained parameters in the dual CNN in Section III. A can
be used to initiate the dual CNNs in the dual RNN, i. e.,
θSF = θ̂SF and θAD = θ̂AD. Meanwhile, the extra parameters,
θ′SF and θ′AD, are set as 0, where the effect of the extra input,
TNi , is eliminated. Thus, the performance of the dual RNN is
equal to that of the dual CNN after initiation.

The details of TimeNet are shown in Fig. 4(b). TimeNet
has one hidden layer in each domain and the first convolution
uses 8N 3× 3 filters and leaky ReLU activation function. The
last convolution has 2N 3 × 3 filters with activation function.
The output of TimeNet in the SF domain at the i-th block
is TNSF,i+1 while the input of this TimeNet is TNSF,i and
the current LS-CE ĤLS,SF,i . The output of TimeNet in the
AD domain at the i-th block, TNAD,i+1, is obtained by the
same process with the input of ĤLS,i and TNAD,i . The CNN
processes of TimeNet in two domains are both denoted as
gCNN(·). The process of TimeNet in the SF domain can be
expressed as

TNSF,i+1 = gCNN([ĤLS,i,TNSF,i];ωSF) (23)

and that in the AD domain

TNAD,i+1 = gCNN([D(ĤLS,i),TNAD,i];ωAD), (24)

where [ĤLS,i,TNSF,i] means that ĤLS,i and TSF,i are connected
in the third dimension with the trainable parameters, ωSF and
ωAD.

Then, the architecture is improved by training with the
following loss function

Loss =
1
T

T∑
i=1
| |Hi − Ĥi | |

2
2 . (25)
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Fig. 5. (a) Frame structure transmitted by a single-antenna
user. The pilot length P=4 is sufficient for four users. (b) Insuf-
ficient pilots: P=1 and each user occupies 1/4 subcarriers. Pilot
contamination: P=4 and several subcarriers face interference.

The dual RNN can still demodulate block by block, and
each block is only added with an extra CNN, called TimeNet.
TimeNet only has one hidden layer in two domains, and thus it
is with low complexity. This architecture is also easily applied
to the hyper dual CNN because this design only introduces an
extra part for time, and trained parameters from its original
CE network are used for initialization.

IV. NUMERICAL RESULTS

In this section, we demonstrate the numerical results under
different scenarios and discuss the pros and cons of the CNN-
based receivers through noise analysis. We also compare the
complexity of the proposed networks and the competing ones.

A. Configuration

The SCM channel model [41], [42] is used to generate
channel realizations in three classic scenarios: urban micro,
urban macro, and suburban macro. The max delay spread is
six, and each path has 20 subpaths in default. The frame
structure of the OFDM system is shown in Fig. 5(a). The
BS has 32 antennas and serves four single-antenna users. The
pilots are orthogonal for all users served by the same BS. Thus,
pilot length P is no less than Nue if the pilot is sufficient to
occupy all 32 subcarriers.

Although each UE only transmits eight pilots, LS-CE can
still be obtained through interpolation due to the frequency
domain’s correlation. Thus, the pilot length is limited to one,
which is called insufficient pilot condition. The pilot sequences
for the users served by the same BS are random in the fre-
quency domain and orthogonal in the time domain. However,

pilots from the users corresponding to different BSs are not
necessarily orthogonal, which is called pilot contamination in
massive MIMO literature. Fig. 5(b) shows insufficient pilots
and pilot contamination in the SF domain. The insufficient
pilot can be addressed by direct interpolation, whereas the
injured resource elements need to be identified to address pilot
contamination. In the following, 5% of the elements in the SF
domain is injured, and the SIR is 5 dB.

We simulate 100,000 channel realizations under each sce-
nario for training. The 10 channels in a frame are correlated,
and the dual RNN has 10 dual CNNs connected by TimeNet.
The training SNR is 10 dB. The optimizer for all networks
is Adam [43] and the initial learning rate is 0.001. We utilize
normalized mean-squared error (NMSE) to measure the CE
performance, yielding

NMSE = E(
| |H − Ĥ| |22
| |H| |22

), (26)

where H and Ĥ are the true and estimated channels, respec-
tively.

B. Dual CNN

CNN-based CE treats the channels as pictures and learns
the features in the SF and the AD domains. However, the
performance of the existing CNN receivers is limited by com-
plexity. Table II shows the relationship between the complexity
and the NMSE performance under the urban micro scenario.
The low-complexity SFCNN, ADCNN, and dual CNN have
eight filters and four hidden layers, and they are compared
with moderate- and high-complexity versions. The moderate-
complexity versions increase the number of hidden layers
from four to eight, and then the high-complexity versions
increase the number of filters from eight to 128. Thus, the
three networks have similar complexities.

For the same CNN architecture, increasing the number
of filters demonstrates improved performance because the
network can learn additional features. The high-complexity
dual CNN is slightly better than LMMSE around its trained
SNR, i.e., 10 dB. The high-complexity ADCNN has almost the
same performance as the highly complex dual CNN when SNR
≥ 5 dB, whereas the moderate-complexity ADCNN reaches
the performance of the moderate-complexity dual CNN when
SNR ≥ 10 dB. This phenomenon indicates that ADCNN
can be easily affected by noise power, especially when the
complexity is low. By contrast, SFCNN is robust to the
change of the noise power. The low- and moderate-complexity
SFCNN has similar NMSE performance as RLMMSE and
surpasses the low- and moderate-complexity ADCNN when
SNR ≤ 5 dB.

However, increasing the number of hidden layers does not
always bring performance gain. The increased number of
layers usually increases the receptive field, which is essential
in the SF domain to learn the adjacent areas’ correlation
but may not be useful for the sparse channel clusters in the
AD domain. Thus, moderate-complexity ADCNN has no im-
provement compared with low-complexity ADCNN. Overall,
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TABLE I. Settings of the proposed CNNs.

Networks Modules Layer Output Activation
dimensions function

Dual CNN

INPUT ĤLS (32,32,2) /

SFCNN

Conv1 (32,32,8) LReLU
Conv2 (32,32,8) LReLU
Conv3 (32,32,2) None

Conv3 output + ĤLS (32,32,2) /
TRANS1 D(·) (32,32,2) /

ADCNN

Conv4 (32,32,8) LReLU
Conv5 (32,32,8) LReLU
Conv6 (32,32,2) None

Conv6 output + Trans1 output (32,32,2) /
TRANS2 D−1(·) (32,32,2) None

HyperNet

INPUT ĤLS (32,32,2) /

CNN
Conv1+ Downsampling (16,16,8) LReLU
Conv2+ Downsampling (8,8,16) LReLU
Conv3+ Downsampling (4,4,32) LReLU

RESHAPE / 512 /
DNN Fully connected 3 Sigmoid

TimeNet

SF(TNSF, i+1)
[ĤLS, i , TNSF, i ] (32,32,4) /

Conv1 (32,32,8) LReLU
Conv2 (32,32,2) None

AD(TNAD, i+1)
[D(ĤLS, i ), TNAD, i ] (32,32,4) /

Conv3 (32,32,8) LReLU
Conv4 (32,32,2) None

* The dual CNN has SFCNN and ADCNN modules. If SFCNN is mentioned as a CE method
independently, it consists of INPUT, SFCNN modules in fact. Similarly, an independent CE
method called ADCNN consists of Input, TRANS1, ADCNN and TRANS2 modules. Their
numbers of filters and hidden layers are also adjusted for the comparison under different
complex versions in Table. II.

TABLE II. The NMSE performance of the CNN based channel estimation with different number of filters in the hidden layers.

Complexity

NMSE(dB) SNR(dB)
0 5 10 15

SFCNN
High (128 filters, 8 hidden layers) -7.7 -14.5 -19.6 -23.6
Moderate (8 filters, 8 hidden layers) -8.7 -14.3 -18.9 -22.5
Low (8 filters, 4 hidden layers) -8.0 -13.4 -17.9 -21.6

ADCNN
High (128 filters, 8 hidden layers) -6.8 -17.1 -22.5 -26.9
Moderate (8 filters, 8 hidden layers) -2.9 -12.6 -20.6 -24.2
Low (8 filters, 4 hidden layers) -3.6 -13.0 -20.5 -24.2

Dual CNN
High (128 filters, 8 hidden layers) -10.5 -17.4 -22.5 -26.7
Moderate (8 filters, 8 hidden layers) -9.7 -16.4 -21.8 -25.8
Low (8 filters, 4 hidden layers) -9.4 -16.1 -21.0 -24.4

RLMMSE / -7.4 -12.4 -17.4 -22.4
LMMSE / -12.22 -17.1 -22.2 -27.1

the dual CNN always shows the best performance if their
complexities are similar.

In the following, the low-complexity dual CNN is studied
further. As shown in Fig. 6, the dual CNN is compared with
the SFCNN and the ADCNN. Although they have the same
number of hidden layers and filters, the dual CNN converges
faster because the dual CNN has a smaller network size in each
domain. Meanwhile, the domain transform modules exploit
the expert knowledge to help the dual CNN learn features
quickly. The ADCNN converges as fast as the SFCNN when
training epochs < 200 but the ADCNN can reach better NMSE
performance under the training SNR, i.e., 10 dB.

To investigate the denoising performance of different meth-
ods, the power distribution in the AD domain is displayed
using gray images, and the sparsity of the channel power

in Fig. 7(a) helps explain the noise power distribution after
networks. In this simulation, SNR is set as 10 dB; thus,
SFCNN is worse than ADCNN, whereas dual CNN is the best.
The noise after SFCNN in Fig. 7(b) still has power in the green
circle, where the delay is larger than six. This result means
that SFCNN has no global insight because the max delay is
the most critical feature exploited by RLMMSE. However,
SFCNN can learn the correlation of antennas and reduce the
noise in green circles, thus has a similar performance as
RLMMSE. ADCNN, as shown in Fig. 7(c), removes more
noise through the AD domain by detecting the channel power
because most of the noise power and the channel power do
not overlap. Its noise power is much less than that of SFCNN
when the delay is larger than six. However, ADCNN also
concentrates on local features, and a large noise power may
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Fig. 6. Training process of the three competing CNN-based
methods.
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Fig. 7. (a) Channel power distribution. (b) Noise power after
SFCNN. (c) Noise power after ADCNN. (d) Noise power after
dual CNN. The blue circles emphasize the different reserved
noise power at delay ≤ 6, whereas the green circles compare
the denoising performance at delay > 6.

be regarded as the channel power by mistake as in the green
circle, which can be removed by SFCNN. Error detection
explains the poor performance of ADCNN under low SNR.
Thus, dual CNN can improve its performance because the
denoising of SFCNN reduces the possibility of error detection
in ADCNN.

The performance of SFCNN is worse than that of ADCNN
because of the white noise and the channel overlap in the SF
domain. However, when pilot contamination is considered, the
superiority of the SFCNN is observed because the interference
spreads over the SF domain. SFCNN can patch these corrupted
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Fig. 8. NMSE performance under pilot contamination. (a)
Training SNR is 5 dB. (b) Training SNR is 10 dB.

areas in the SF domain due to the correlation of adjacent
areas. In Fig. 8(a), we train the three networks under SNR=5
dB. Dual CNN still outperforms the other two methods and
is better than LMMSE when SNR ≤ 7 dB. SFCNN is
also nearly 3 dB better than RLMMSE when the SNR is
0 dB. This result demonstrates that DL-based methods can
outperform conventional methods under interference. ADCNN
is better than SFCNN when SNR is low and the gap becomes
smaller with the increase in SNR. This phenomenon means
that ADCNN mistakenly takes the channel power as noise
when trained under low SNR. In Fig. 8(b), ADCNN surpasses
SFCNN at SNR=6 dB, whereas ADCNN surpasses SFCNN at
SNR=5 dB under white noise in Table II. Therefore, SFCNN
is better when handling pilot contamination. Hence, the gap
between ADCNN and dual CNN is large. Besides, dual CNN
is better than LMMSE under an SNR of 5-12 dB.

The above tests verify that the proposed dual CNN is
always better than the CNN methods in a single domain when
the complexity is similar. The channel features in different
domains facilitate the estimation and dual CNN combines their
advantages.
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C. Robustness Analysis and Performance of Hyper Dual CNN
To test the robustness of the networks, we analyze the noise

power distribution in Fig. 9. The networks are trained under
the urban micro scenario, tested under the suburban macro
scenario, and SNR=15 dB. When the training scenario and the
test scenario are the same, the performance of ADCNN is close
to dual CNN. However, when the scenario is mismatched, the
denoising performance of the SFCNN is weak, as shown in
Fig. 9(a). The change of the correlation of the channel has
excellent effects on SFCNN. By contrast, ADCNN still works
well due to the sparsity of the channel in the AD domain.
Dual CNN becomes worse than ADCNN under the error noise
introduced by the mismatched SFCNN. The error cannot be
distinguished from the channel, especially when they spread
at the same area, as in the circle in Figs. 9(b) and (c).

(a)

(b) (c)

Fig. 9. Noise power distribution under the mismatch scenario.
(a) Noise power after SFCNN. (b) Noise power after ADCNN.
(c) Noise power after dual CNN.

The proposed hyper dual CNN can solve the above is-
sue. The training strategy is described in Section III B. In
Fig. 10(a), we simulate an untrained scenario for the above
networks by increasing the max delay from 6 to 12 paths.
The larger max delay spread causes a serious error because
RLMMSE and the DNN ignore the channel power when the
delay is larger than six. Refined RLMMSE estimates lmax

online and updates its CE matrix WRLMMSE automatically. Re-
fined LMMSE needs to recalculate R and WRLMMSE. Although
Refined LMMSE achieves the best performance in Fig. 10(a),
its complexity is much larger than other methods. The hyper
dual CNN works without any online training and performs
better than the refined RLMMSE when SNR ≤ 15 dB. The
adaptive parameters α are close to [0 0 0] when SNR ≥ 5 dB,
indicating that SFCNNs cannot deal with untrained scenarios
and only ADCNN is chosen for use. This phenomenon also
illustrates the weakness of ADCNN in Fig. 7(c), where the
large noise power is regarded as a channel power, which is
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Fig. 10. NMSE performance of hyper dual CNN. (a) Under
the untrained scenario with longer delay spread. (b) Under the
mixed channels of the three scenarios.

beneficial for robustness. The channel power should never
be ignored by ADCNN even though it appears out of the
assumption in the offline training set. The hyper dual CNN
is better than ADCNN when SNR ≤ 5 dB. Thus, HyperNet
combines the existing SFCNNs and brings performance gain
when the noise power is large. For example, the output of
HyperNet α is [0.141 0.042 0.007] when SNR=0 dB.

Apart from the untrained scenario, the hyper dual CNN is
designed to improve the performance when the CE method
needs to face many different scenarios. For comparison, the
dual CNN, which is the traditional method to improve ro-
bustness, is trained under the mixed training set of three
scenarios. In Fig. 10 (b), when the training set and the test
set are matched, HyperNet helps improve performance under
each scenario. Dual CNN without HyperNet sacrifices nearly
1 dB NMSE performance to balance the estimation precision
of the three scenarios. LMMSE obtains its R from the mixed
scenarios and performs a little worse than that in a single
scenario, as shown in Table II; thus, the hyper dual CNN
surpasses the LMMSE when SNR= 7- 10 dB.
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The robustness analysis explains that mismatch happens
when the scenario changes. We use additional SFCNNs to
reduce the dependence on the channel correlation, and the
hyper dual CNN is introduced to adapt to the changing en-
vironments without online training. The proposed architecture
and training strategy are low in complexity and perform well
under the trained and untrained scenarios.

D. Performance of Dual RNN

The dual RNN delivering TNSF,i and TNAD,i is always bet-
ter than the RNN only delivering in one domain. Meanwhile,
using the CE from the output of the prior dual CNN, Ĥi ,
as the input of TimeNet is better than the LS estimation,
HLS,SF,i . However, Ĥi brings low robustness under the mis-
match scenario because the estimation error is delivered by
the RNN framework. Thus, LS estimation is a robust choice
as the input of TimeNet. Apart from dual RNN, we also
combine TimeNet, HyperNet, and the dual CNN, called hyper
dual RNN. Additional TimeNets are not necessary because
the changing scenarios have minimal effect on the hyper
dual RNN. However, the changing temporal correlation is a
challenge. The temporal correlation, which is affected by the
velocity of the movements, changes continuously.

We assume the upper limit; thus, the channels are correlated
in 10 blocks at least. The temporal correlation in the training
set continuously changes from the assumption bound to static.
Fig. 11(a) compares the performance of the hyper dual CNN.
The test environment is the same as Fig. 10(a), where three
scenarios are mixed. Dual RNN (T) means that the dual RNN
is trained and tested exactly under the same environment, and
T blocks are correlative. The hyper dual RNN is trained for the
environment where scenarios and temporal correlation change.
Then, the hyper dual RNN (T) is tested under the mixed
scenarios, and T blocks are correlated. The hyper dual RNN
(T = 10) is almost 2 dB worse than the dual RNN (T = 10),
and the performance gap is larger when the correlated blocks
is 50. The hyper dual RNN loses performance to adapt to the
changing environment. The number of relative blocks has a
slight influence on the hyper dual RNN, so it is more robust
than the dual RNN without any online redefinition.

We also test the proposed networks with the insufficient
pilot in Fig. 11(b). Each user uses 1/4 subcarriers to trans-
mit pilots; thus, four users occupy an OFDM symbol of
32 subcarriers in total. Scatter pilots mean a user occupies
different groups of eight subcarriers in contiguous blocks so
that all the subcarriers are estimated once by pilots every four
blocks. The dual CNN performs better than LMMSE when
SNR ≤ 10 dB, demonstrating the superiority of the AI-aided
methods under extreme environments. The dual RNN achieves
better performance than the dual CNN and always surpasses
LMMSE. The scatter pilots help the dual RNN to reduce the
interpolation error and improve the performance further.

Finally, the performance of the proposed methods with
different BS antennas is shown in Table III. They are both
trained and tested under the scenarios of urban micro. The
training SNR is 10 dB, and 10 blocks are correlated in the
test set. The pilot is sufficient, and only the white noise exists,
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Fig. 11. (a) NMSE performance of different RNN designs. (b)
NMSE performance under insufficient pilots.

so the dual CNN cannot surpass LMMSE. The dual RNN has
a chance to perform better than LMMSE because it exploits
temporal correlation. RLMMSE has the lowest complexity,
and it only exploits correlation in the frequency domain; thus,
its NMSE performance remains unchanged under different
antennas. The LMMSE and the proposed methods always
perform better with the increase of antennas. The dual CNN
and the dual RNN under high SNR increase more than that
under low SNR. The dual RNN has almost no performance
gain under 0 dB SNR when the number of BS antennas
M is increased from 32 to 64. In contrast, the dual RNN
surpasses the LMMSE under 15 dB SNR when M=64, but
its performance is worse than the LMMSE when M=32 and
M=48. This phenomenon is due to the better sparsity in AD
domain with the increase of antennas. Thus, the dual CNN
can remove more noise in the AD domain when SNR is high.
However, the dual CNN and RNN are weak in handling a
large noise power in the AD domain, which restrains their
performance when SNR is low.

In the abovementioned test, the dual RNN exploits the
temporal correlation and thus obtains better performance.
The hyper dual RNN is proposed to address the changing
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TABLE III. NMSE performance of the proposed methods under different number of BS antennas.

Methods

NMSE(dB) SNR(dB)
0 5 10 15

M=64
Dual RNN -9.6 -19.0 -25.0 -28.8
Dual CNN -9.8 -17.5 -23.2 -27.0
LMMSE -13.9 -18.7 -23.9 -28.7

M=48
Dual RNN -9.4 -18.2 -23.8 -27.3
Dual CNN -9.6 -16.7 -21.9 -25.5
LMMSE -13.0 -17.8 -23.0 -27.8

M=32
Dual RNN -9.2 -17.6 -22.8 -26.2
Dual CNN -9.4 -16.1 -21.0 -24.4
LMMSE -12.2 -17.1 -22.2 -27.1

RLMMSE / -7.4 -12.4 -17.4 -22.4

environments, and it also outperforms the conventional MMSE
methods and CNN-based methods.

E. Complexity Analysis

TABLE IV. Forward complexity analysis for proposed net-
works and competing methods.

FLOPs Parameters

SFCNN 4.1M 2050
ADCNN 4.3M 2050
Dual CNN 3.7M 1764
Dual RNN 6.1M 2936
HyperNet 0.055M 4584
RLMMSE 0.16M /
LMMSE 8.4M /
One Layer DNN 8.4M 4.2M

Table IV compares the complexity of the number of floating-
point multiplication-adds (FLOPs) [44] and parameters to
estimate a channel for each user when M = K = 32. SFCNN,
ADCNN, and dual CNN with the same number of hidden
layers have similar complexities. Although the complexity
of the CNN-based methods only relates to the first order
of M and K , the choice of filter size and input and output
channels is also essential. Three CNN-based methods still
cost approximately 1/2 of hardware resources compared with
the LMMSE. However, dual CNN is better than the other
two CNN-based methods and approaches the performance
of LMMSE under white noise. When considering pilot con-
tamination and insufficient pilot, CNN-based CE can surpass
LMMSE. Furthermore, when the scenarios vary, the LMMSE
costs impractical high complexity, whereas CNN-based meth-
ods can be enhanced with HyperNet, which only costs minimal
resources. The dual RNN exploits the temporal correlation but
its complexity is still lower than that of LMMSE. With the
help of temporal correlation, the dual RNN performs better
than LMMSE under white noise, let alone under insufficient
pilots and pilot contamination conditions. The one-layer DNN
is common when designing a simple DNN-based CE method
[21], [23] because an end-to-end DNN costs too much time
and resources to train. The number of its trainable parameters
is O((MK)2); thus, DNN-based architecture is hard to realize

when antennas and subcarriers are large. Moreover, 4.2 M
parameters are impossible to refine under changing scenarios.

Overall, complexity analysis suggests that proposed net-
works cost fewer resources than the conventional methods and
competing DL-based architectures. Moreover, the introduced
HyperNet and training strategy improves the robustness with-
out online refining.

V. CONCLUSIONS

In this paper, we first developed a CNN-based CE called
dual CNN to take advantage of in the SF and AD domains.
The channel’s sparsity in the AD domain enables the CNN
to handle most of the white noise, whereas the channel
correlation in the SF domain helps ease interference. The
SF domain’s correlation also reduces the noise power so
that the ADCNN has less possibility to be confused when
distinguishing the channel and noise. Thus, the dual CNN
has better performance and robustness than estimation in a
single domain. We also introduced HyperNet, which does not
require online training but performs better than the dual CNN
and RLMMSE under the trained and untrained scenarios. We
proposed an RNN framework to improve the CE performance
by exploiting the temporal correlation of adjacent OFDM
blocks. This framework is initiated with a trained dual CNN
and learns to perform better than dual CNN. The robust
design in this framework stabilizes its performance as long
as the temporal correlation is larger than the assumption in
the training set.
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