52 research outputs found

    Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists

    Get PDF
    The mechanism of the compensatory increase in electromyographic activity (EMG) of a cat ankle extensor during walking shortly after paralysis of its synergists is not fully understood. It is possible that due to greater ankle flexion in stance in this situation, muscle spindles are stretched to a greater extent and, thus, contribute to the EMG enhancement. However, also changes in force feedback and central drive may play a role. The aim of the present study was to investigate the short-term (1- to 2-week post-op) effects of lateral gastrocnemius (LG) and soleus (SO) denervation on muscle fascicle and muscle–tendon unit (MTU) length changes, as well as EMG activity of the intact medial gastrocnemius (MG) muscle in stance during overground walking on level (0%), downslope (−50%, presumably enhancing stretch of ankle extensors in stance) and upslope (+50%, enhancing load on ankle extensors) surfaces. Fascicle length was measured directly using sonomicrometry, and MTU length was calculated from joint kinematics. For each slope condition, LG-SO denervation resulted in an increase in MTU stretch and peak stretch velocity of the intact MG in early stance. MG muscle fascicle stretch and peak stretch velocity were also higher than before denervation in downslope walking. Denervation significantly decreased the magnitude of MG fascicle shortening and peak shortening velocity during early stance in level and upslope walking. MG EMG magnitude in the swing and stance phases was substantially greater after denervation, with a relatively greater increase during stance of level and upslope walking. These results suggest that the fascicle length patterns of MG muscle are significantly altered when two of its synergists are in a state of paralysis. Further, the compensatory increase in MG EMG is likely mediated by enhanced MG length feedback during downslope walking, enhanced feedback from load-sensitive receptors during upslope walking and enhanced central drive in all walking conditions

    Cleavage modification did not alter blastomere fates during bryozoan evolution

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The study was funded by the core budget of the Sars Centre and by The European Research Council Community’s Framework Program Horizon 2020 (2014–2020) ERC grant agreement 648861 to A

    A sensory-driven controller for quadruped locomotion

    No full text
    Locomotion of quadruped robots has not yet achieved the harmony, flexibility, efficiency and robustness of its biological counterparts. Biological research showed that spinal reflexes are crucial for a successful locomotion in the most varied terrains. In this context, the development of bio-inspired controllers seems to be a good way to move toward an efficient and robust robotic locomotion, by mimicking their biological counterparts. This contribution presents a sensory-driven controller designed for the simulated Oncilla quadruped robot. In the proposed reflex controller, movement is generated through the robot's interactions with the environment, and therefore, the controller is solely dependent on sensory information. The results show that the reflex controller is capable of producing stable quadruped locomotion with a regular stepping pattern. Furthermore, it is capable of dealing with slopes without changing the parameters and with small obstacles, overcoming them successfully. Finally, system robustness was verified by adding noise to sensors and actuators and also delays.This work has been supported by FCT-Fundacao para a Ciência e Tecnologia in the scope of the project: PEst-UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio
    • …
    corecore