183 research outputs found

    Distinct Mechanisms for Induction and Tolerance Regulate the Immediate Early Genes Encoding Interleukin 1β and Tumor Necrosis Factor α

    Get PDF
    Interleukin-1β and Tumor Necrosis Factor α play related, but distinct, roles in immunity and disease. Our study revealed major mechanistic distinctions in the Toll-like receptor (TLR) signaling-dependent induction for the rapidly expressed genes (IL1B and TNF) coding for these two cytokines. Prior to induction, TNF exhibited pre-bound TATA Binding Protein (TBP) and paused RNA Polymerase II (Pol II), hallmarks of poised immediate-early (IE) genes. In contrast, unstimulated IL1B displayed very low levels of both TBP and paused Pol II, requiring the lineage-specific Spi-1/PU.1 (Spi1) transcription factor as an anchor for induction-dependent interaction with two TLR-activated transcription factors, C/EBPβ and NF-κB. Activation and DNA binding of these two pre-expressed factors resulted in de novo recruitment of TBP and Pol II to IL1B in concert with a permissive state for elongation mediated by the recruitment of elongation factor P-TEFb. This Spi1-dependent mechanism for IL1B transcription, which is unique for a rapidly-induced/poised IE gene, was more dependent upon P-TEFb than was the case for the TNF gene. Furthermore, the dependence on phosphoinositide 3-kinase for P-TEFb recruitment to IL1B paralleled a greater sensitivity to the metabolic state of the cell and a lower sensitivity to the phenomenon of endotoxin tolerance than was evident for TNF. Such differences in induction mechanisms argue against the prevailing paradigm that all IE genes possess paused Pol II and may further delineate the specific roles played by each of these rapidly expressed immune modulators. © 2013 Adamik et al

    Interferon-α resistance in renal carcinoma cells is associated with defective induction of signal transducer and activator of transcription 1 which can be restored by a supernatant of phorbol 12-myristate 13-acetate stimulated peripheral blood mononuclear cells

    Get PDF
    Therapy of selected human malignancies with interferon-α is widely accepted but often complicated by the emergence of interferon-α resistance. Interferon is a pleiotropic cytokine with antiproliferative, antitumour, antiviral and immunmodulatory effect; it signals through the Jak-STAT signal transduction pathway where signal transducer and activator of transcription 1 plays an important role. Here we report both, a lack of signal transducer and activator of transcription induction in interferon-α resistant renal cell carcinoma cells and signal transducer and activator of transcription 1 reinduction of phorbol 12-myristate 13-acetate-stimulated peripheral blood mononuclear cells supernatant. Preliminary experiments on the identification of the molecules that reinducing signal transducers and activators of transcription 1 indicate that interferon-γ may be the responsible candidate cytokine, but several others may be involved as well. This work provides the basis for therapeutic strategies directed at the molecular modulation of interferon-α resistance in human neoplasms

    A High-Resolution Whole-Genome Map of Key Chromatin Modifications in the Adult Drosophila melanogaster

    Get PDF
    Epigenetic research has been focused on cell-type-specific regulation; less is known about common features of epigenetic programming shared by diverse cell types within an organism. Here, we report a modified method for chromatin immunoprecipitation and deep sequencing (ChIP–Seq) and its use to construct a high-resolution map of the Drosophila melanogaster key histone marks, heterochromatin protein 1a (HP1a) and RNA polymerase II (polII). These factors are mapped at 50-bp resolution genome-wide and at 5-bp resolution for regulatory sequences of genes, which reveals fundamental features of chromatin modification landscape shared by major adult Drosophila cell types: the enrichment of both heterochromatic and euchromatic marks in transposons and repetitive sequences, the accumulation of HP1a at transcription start sites with stalled polII, the signatures of histone code and polII level/position around the transcriptional start sites that predict both the mRNA level and functionality of genes, and the enrichment of elongating polII within exons at splicing junctions. These features, likely conserved among diverse epigenomes, reveal general strategies for chromatin modifications

    Novel animal models for studying complex brain disorders: BAC-driven miRNA-mediated in vivo silencing of gene expression

    Get PDF
    In schizophrenia, glutamic acid decarboxylase 1 (GAD1) disturbances are robust, consistently observed, cell-type specific and represent a core feature of the disease. In addition, neuropeptide Y (NPY), which is a phenotypic marker of a sub-population of GAD1-containing interneurons, has shown reduced expression in the prefrontal cortex in subjects with schizophrenia, suggesting that dysfunction of the NPY+ cortical interneuronal sub-population might be a core feature of this devastating disorder. However, modeling gene expression disturbances in schizophrenia in a cell type-specific manner has been extremely challenging. To more closely mimic these molecular and cellular human post-mortem findings, we generated a transgenic mouse in which we downregulated GAD1 mRNA expression specifically in NPY+ neurons. This novel, cell type-specific in vivo system for reducing gene expression uses a bacterial artificial chromosome (BAC) containing the NPY promoter-enhancer elements, the reporter molecule (eGFP) and a modified intron containing a synthetic microRNA (miRNA) targeted to GAD1. The animals of isogenic strains are generated rapidly, providing a new tool for better understanding the molecular disturbances in the GABAergic system observed in complex neuropsychiatric disorders such as schizophrenia. In the future, because of the small size of the silencing miRNAs combined with our BAC strategy, this method may be modified to allow generation of mice with simultaneous silencing of multiple genes in the same cells with a single construct, and production of splice-variant-specific knockdown animals

    Host Alternation Is Necessary to Maintain the Genome Stability of Rift Valley Fever Virus

    Get PDF
    Arthropod-borne viruses are transmitted among vertebrate hosts by insect vectors. Unusually, Rift Valley fever virus (RVFV) can also be transmitted by direct contacts of animals/humans with infectious tissues. What are the molecular mechanisms and evolutionary events leading to adopt one mode of transmission rather than the other? Viral replication is implied to be different in a vertebrate host and an invertebrate host. The alternating host cycle tends to limit virus evolution by adopting a compromise fitness level for replication in both hosts. To test this hypothesis, we used a cell culture model system to study the evolution of RVFV. We found that freeing RVFV from alternating replication in mammalian and mosquito cells led to large deletions in the NSs gene carrying the virulence factor. Resulting NSs-truncated viruses were able to protect mice from a challenge with a virulent RVFV. Thus, in nature, virulence is likely maintained by continuous alternating passages between vertebrates and insects. Thereby, depending on the mode of transmission adopted, the evolution of RVFV will be of major importance to predict the outcome of outbreaks

    Small Molecule Inhibited Parathyroid Hormone Mediated cAMP Response by N–Terminal Peptide Binding

    Get PDF
    Ligand binding to certain classes of G protein coupled receptors (GPCRs) stimulates the rapid synthesis of cAMP through G protein. Human parathyroid hormone (PTH), a member of class B GPCRs, binds to its receptor via its N–terminal domain, thereby activating the pathway to this secondary messenger inside cells. Presently, GPCRs are the target of many pharmaceuticals however, these drugs target only a small fraction of structurally known GPCRs (about 10%). Coordination complexes are gaining interest due to their wide applications in the medicinal field. In the present studies we explored the potential of a coordination complex of Zn(II) and anthracenyl–terpyridine as a modulator of the parathyroid hormone response. Preferential interactions at the N–terminal domain of the peptide hormone were manifested by suppressed cAMP generation inside the cells. These observations contribute a regulatory component to the current GPCR–cAMP paradigm, where not the receptor itself, but the activating hormone is a target. To our knowledge, this is the first report about a coordination complex modulating GPCR activity at the level of deactivating its agonist. Developing such molecules might help in the control of pathogenic PTH function such as hyperparathyroidism, where control of excess hormonal activity is essentially required

    The impact of single and pairwise Toll-like receptor activation on neuroinflammation and neurodegeneration

    Get PDF
    Background Toll-like receptors (TLRs) enable innate immune cells to respond to pathogen- and host-derived molecules. The central nervous system (CNS) exhibits most of the TLRs identified with predominant expression in microglia, the major immune cells of the brain. Although individual TLRs have been shown to contribute to CNS disorders, the consequences of multiple activated TLRs on the brain are unclear. We therefore systematically investigated and compared the impact of sole and pairwise TLR activation on CNS inflammation and injury. Methods Selected TLRs expressed in microglia and neurons were stimulated with their specific TLR ligands in varying combinations. Cell cultures were then analyzed by immunocytochemistry, FlowCytomix, and ELISA. To determine neuronal injury and neuroinflammation in vivo, C57BL/6J mice were injected intrathecally with TLR agonists. Subsequently, brain sections were analyzed by quantitative real-time PCR and immunohistochemistry. Results Simultaneous stimulation of TLR4 plus TLR2, TLR4 plus TLR9, and TLR2 plus TLR9 in microglia by their respective specific ligands results in an increased inflammatory response compared to activation of the respective single TLR in vitro. In contrast, additional activation of TLR7 suppresses the inflammatory response mediated by the respective ligands for TLR2, TLR4, or TLR9 up to 24 h, indicating that specific combinations of activated TLRs individually modulate the inflammatory response. Accordingly, the composition of the inflammatory response pattern generated by microglia varies depending on the identity and combination of the activated TLRs engaged. Likewise, neuronal injury occurs in response to activation of only selected TLRs and TLR combinations in vitro. Activation of TLR2, TLR4, TLR7, and TLR9 in the brain by intrathecal injection of the respective TLR ligand into C57BL/6J mice leads to specific expression patterns of distinct TLR mRNAs in the brain and causes influx of leukocytes and inflammatory mediators into the cerebrospinal fluid to a variable extent. Also, the intensity of the inflammatory response and neurodegenerative effects differs according to the respective activated TLR and TLR combinations used in vivo. Conclusions Sole and pairwise activation of TLRs modifies the pattern and extent of inflammation and neurodegeneration in the CNS, thereby enabling innate immunity to take account of the CNS diseases’ diversity

    International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis.

    Get PDF
    BACKGROUND: Critical examination of the quality and validity of available allergic rhinitis (AR) literature is necessary to improve understanding and to appropriately translate this knowledge to clinical care of the AR patient. To evaluate the existing AR literature, international multidisciplinary experts with an interest in AR have produced the International Consensus statement on Allergy and Rhinology: Allergic Rhinitis (ICAR:AR). METHODS: Using previously described methodology, specific topics were developed relating to AR. Each topic was assigned a literature review, evidence-based review (EBR), or evidence-based review with recommendations (EBRR) format as dictated by available evidence and purpose within the ICAR:AR document. Following iterative reviews of each topic, the ICAR:AR document was synthesized and reviewed by all authors for consensus. RESULTS: The ICAR:AR document addresses over 100 individual topics related to AR, including diagnosis, pathophysiology, epidemiology, disease burden, risk factors for the development of AR, allergy testing modalities, treatment, and other conditions/comorbidities associated with AR. CONCLUSION: This critical review of the AR literature has identified several strengths; providers can be confident that treatment decisions are supported by rigorous studies. However, there are also substantial gaps in the AR literature. These knowledge gaps should be viewed as opportunities for improvement, as often the things that we teach and the medicine that we practice are not based on the best quality evidence. This document aims to highlight the strengths and weaknesses of the AR literature to identify areas for future AR research and improved understanding

    The Evolution of Invasiveness in Garden Ants

    Get PDF
    It is unclear why some species become successful invaders whilst others fail, and whether invasive success depends on pre-adaptations already present in the native range or on characters evolving de-novo after introduction. Ants are among the worst invasive pests, with Lasius neglectus and its rapid spread through Europe and Asia as the most recent example of a pest ant that may become a global problem. Here, we present the first integrated study on behavior, morphology, population genetics, chemical recognition and parasite load of L. neglectus and its non-invasive sister species L. turcicus. We find that L. neglectus expresses the same supercolonial syndrome as other invasive ants, a social system that is characterized by mating without dispersal and large networks of cooperating nests rather than smaller mutually hostile colonies. We conclude that the invasive success of L. neglectus relies on a combination of parasite-release following introduction and pre-adaptations in mating system, body-size, queen number and recognition efficiency that evolved long before introduction. Our results challenge the notion that supercolonial organization is an inevitable consequence of low genetic variation for chemical recognition cues in small invasive founder populations. We infer that low variation and limited volatility in cuticular hydrocarbon profiles already existed in the native range in combination with low dispersal and a highly viscous population structure. Human transport to relatively disturbed urban areas thus became the decisive factor to induce parasite release, a well established general promoter of invasiveness in non-social animals and plants, but understudied in invasive social insects

    Sequence Relationships among C. elegans, D. melanogaster and Human microRNAs Highlight the Extensive Conservation of microRNAs in Biology

    Get PDF
    microRNAs act in a prevalent and conserved post-transcriptional gene regulatory mechanism that impacts development, homeostasis and disease, yet biological functions for the vast majority of miRNAs remain unknown. Given the power of invertebrate genetics to promote rapid evaluation of miRNA function, recently expanded miRNA identifications (miRBase 10.1), and the importance of assessing potential functional redundancies within and between species, we evaluated miRNA sequence relationships by 5′ end match and overall homology criteria to compile a snapshot overview of miRNA families within the C. elegans and D. melanogaster genomes that includes their identified human counterparts. This compilation expands literature documentation of both the number of families and the number of family members, within and between nematode and fly models, and highlights sequences conserved between species pairs or among nematodes, flies and humans. Themes that emerge include the substantial potential for functional redundancy of miRNA sequences within species (84/139 C. elegans miRNAs and 70/152 D. melanogaster miRNAs share significant homology with other miRNAs encoded by their respective genomes), and the striking extent to which miRNAs are conserved across species—over half (73/139) C. elegans miRNAs share sequence homology with miRNAs encoded also in both fly and human genomes. This summary analysis of mature miRNA sequence relationships provides a quickly accessible resource that should facilitate functional and evolutionary analyses of miRNAs and miRNA families
    corecore