48 research outputs found

    BacMam delivery of a protective gene to reduce renal ischemia-reperfusion injury

    Get PDF
    Ischaemia-reperfusion (I/R) injury remains the primary contributor to delayed graft function in kidney transplantation. The beneficial application of manganese superoxide dismutase (sod), delivered by a BacMam vector, against renal I/R injury has not been evaluated previously. Therefore, in this study we overexpressed sod-2 in proximal tubular epithelial (HK-2) cells and porcine kidney organs during simulated renal I/R injury. Incubation of HK-2 cells with antimycin A and 2-deoxyglucose resulted in a significant decrease in intracellular ATP levels; following reperfusion, ATP levels significantly increased overtime in cells overexpressing sod-2. In addition, lactate dehydrogenase (LDH) release declined over 72 h in BacMam-transduced injured cells. Ex vivo delivery of sod-2 significantly increased ATP levels in organs after 24 h of cold perfusion. In vitro and ex vivo results suggested that BacMam transduction successfully delivered sod-2, which reduced injury associated with I/R, by improving ATP cell content and decreasing LDH release with a subsequent increase in kidney tissue viability. These data provide further evidence for the potential application of BacMam as a gene delivery system for attenuating injury after cold preservation

    Novel insights into the insect trancriptome response to a natural DNA virus

    Get PDF
    ArticleCopyright © 2015 McTaggart et al.; licensee BioMed Central.Background Little is known about invertebrate responses to DNA viruses. Here, we infect a commercially important pest moth species Plodia interpunctella with its naturally infecting DNA virus. We sequenced, assembled and annotated the complete transcriptome of the moth, and a partial transcriptome of the virus. We then tested for differential gene expression between moths that were exposed to the virus and controls. Results We found 51 genes that were differentially expressed in moths exposed to a DNA baculovirus compared to controls. Gene set enrichment analysis revealed that cuticle proteins were significantly overrepresented in this group of genes. Interestingly, 6 of the 7 differentially expressed cuticle proteins were downregulated, suggesting that baculoviruses are able to manipulate its host’s response. In fact, an additional 29 of the 51 genes were also downregulated in exposed compared with control animals, including a gram-negative binding protein. In contrast, genes involved in transposable element movement were upregulated after infection. Conclusions We present the first experiment to measure genome-wide gene expression in an insect after infection with a natural DNA virus. Our results indicate that cuticle proteins might be key genes underpinning the response to DNA viruses. Furthermore, the large proportion of genes that were downregulated after viral exposure suggests that this virus is actively manipulating the insect immune response. Finally, it appears that transposable element activity might increase during viral invasion. Combined, these results provide much needed host candidate genes that respond to DNA viral invaders.NERC Biomolecular Analysis Facility (NBAF

    Chemical Magnetoreception: Bird Cryptochrome 1a Is Excited by Blue Light and Forms Long-Lived Radical-Pairs

    Get PDF
    Cryptochromes (Cry) have been suggested to form the basis of light-dependent magnetic compass orientation in birds. However, to function as magnetic compass sensors, the cryptochromes of migratory birds must possess a number of key biophysical characteristics. Most importantly, absorption of blue light must produce radical pairs with lifetimes longer than about a microsecond. Cryptochrome 1a (gwCry1a) and the photolyase-homology-region of Cry1 (gwCry1-PHR) from the migratory garden warbler were recombinantly expressed and purified from a baculovirus/Sf9 cell expression system. Transient absorption measurements show that these flavoproteins are indeed excited by light in the blue spectral range leading to the formation of radicals with millisecond lifetimes. These biophysical characteristics suggest that gwCry1a is ideally suited as a primary light-mediated, radical-pair-based magnetic compass receptor

    Baculovirus Capsid Display Potentiates OVA Cytotoxic and Innate Immune Responses

    Get PDF
    Baculoviruses (BV) are DNA viruses that are pathogenic for insects. Although BV infect a range of mammalian cell types, they do not replicate in these cells. Indeed, the potential effects of these insect viruses on the immune responses of mammals are only just beginning to be studied. We show in this paper that a recombinant Autographa californica multiple nuclear polyhedrosis virus carrying a fragment of ovalbumin (OVA) on the VP39 capsid protein (BV-OVA) has the capacity to act as an adjuvant and vector of antigens in mice, thereby promoting specific CD4 and cytotoxic T cell responses against OVA. BV also induced in vivo maturation of dendritic cells and the production of inflammatory cytokines, thus promoting innate and adaptive immune responses. The OVA-specific response induced by BV-OVA was strong enough to reject a challenge with OVA-expressing melanoma cells (MO5 cells) and effectively prolonged survival of MO5 bearing mice. All these findings, together with the absence of pre-existing immunity to BV in humans and the lack of viral gene expression in mammalian cells, make BV a candidate for vaccination
    corecore