2,645 research outputs found

    Derivation of the Quantum Probability Rule without the Frequency Operator

    Full text link
    We present an alternative frequencists' proof of the quantum probability rule which does not make use of the frequency operator, with expectation that this can circumvent the recent criticism against the previous proofs which use it. We also argue that avoiding the frequency operator is not only for technical merits for doing so but is closely related to what quantum mechanics is all about from the viewpoint of many-world interpretation.Comment: 12 page

    Effective Hamiltonian approach to adiabatic approximation in open systems

    Get PDF
    The adiabatic approximation in open systems is formulated through the effective Hamiltonian approach. By introducing an ancilla, we embed the open system dynamics into a non-Hermitian quantum dynamics of a composite system, the adiabatic evolution of the open system is then defined as the adiabatic dynamics of the composite system. Validity and invalidity conditions for this approximation are established and discussed. A High-order adiabatic approximation for open systems is introduced. As an example, the adiabatic condition for an open spin-12\frac 1 2 particle in time-dependent magnetic fields is analyzed.Comment: 6 pages, 2 figure

    The cell of origin dictates the temporal course of neurofibromatosis-1 (Nf1) low-grade glioma formation.

    Get PDF
    Low-grade gliomas are one of the most common brain tumors in children, where they frequently form within the optic pathway (optic pathway gliomas; OPGs). Since many OPGs occur in the context of the Neurofibromatosis Type 1 (NF1) cancer predisposition syndrome, we have previously employed Nf1 genetically-engineered mouse (GEM) strains to study the pathogenesis of these low-grade glial neoplasms. In the light of the finding that human and mouse low-grade gliomas are composed of Olig2+ cells and that Olig2+ oligodendrocyte precursor cells (OPCs) give rise to murine high-grade gliomas, we sought to determine whether Olig2+ OPCs could be tumor-initiating cells for Nf1 optic glioma. Similar to the GFAP-Cre transgenic strain previously employed to generate Nf1 optic gliomas, Olig2+ cells also give rise to astrocytes in the murine optic nerve in vivo. However, in contrast to the GFAP-Cre strain where somatic Nf1 inactivation in embryonic neural progenitor/stem cells (Nf1flox/mut; GFAP-Cre mice) results in optic gliomas by 3 months of age in vivo, mice with Nf1 gene inactivation in Olig2+ OPCs (Nf1flox/mut; Olig2-Cre mice) do not form optic gliomas until 6 months of age. These distinct patterns of glioma latency do not reflect differences in the timing or brain location of somatic Nf1 loss. Instead, they most likely reflect the cell of origin, as somatic Nf1 loss in CD133+ neural progenitor/stem cells during late embryogenesis results in optic gliomas at 3 months of age. Collectively, these data demonstrate that the cell of origin dictates the time to tumorigenesis in murine optic glioma

    Fermion Production in the Background of Minkowski Space Classical Solutions in Spontaneously Broken Gauge Theory

    Get PDF
    We investigate fermion production in the background of Minkowski space solutions to the equations of motion of SU(2)SU(2) gauge theory spontaneously broken via the Higgs mechanism. First, we attempt to evaluate the topological charge QQ of the solutions. We find that for solutions QQ is not well-defined as an integral over all space-time. Solutions can profitably be characterized by the (integer-valued) change in Higgs winding number ΔNH\Delta N_H. We show that solutions which dissipate at early and late times and which have nonzero ΔNH\Delta N_H must have at least the sphaleron energy. We show that if we couple a quantized massive chiral fermion to a classical background given by a solution, the number of fermions produced is ΔNH\Delta N_H, and is not related to QQ.Comment: Version to be published. Argument showing that the topological charge of solutions is undefined has been strengthened and clarified. Conclusions unchange

    Generation and Suppression of Decoherence in Artificial Environment for Qubit System

    Get PDF
    It is known that a quantum system with finite degrees of freedom can simulate a composite of a system and an environment if the state of the hypothetical environment is randomized by external manipulation. We show theoretically that any phase decoherence phenomena of a single qubit can be simulated with a two-qubit system and demonstrate experimentally two examples: one is phase decoherence of a single qubit in a transmission line, and the other is that in a quantum memory. We perform NMR experiments employing a two-spin molecule and clearly measure decoherence for both cases. We also prove experimentally that the bang-bang control efficiently suppresses decoherence.Comment: 25 pages, 7 figures; added reference

    Physical fitness is associated with neural activity during working memory performance in major depressive disorder

    Get PDF
    Background: Deficits in cognition like working memory (WM) are highly prevalent symptoms related to major depressive disorder (MDD). Neuroimaging studies have described frontoparietal abnormalities in patients with MDD as a basis for these deficits. Based on research in healthy adults, it is hypothesized that increased physical fitness might be a protective factor for these deficits in MDD. However, the relationship between physical fitness and WM-related neural activity and performance has not been tested in MDD, to date. Understanding these associations could inform the development of physical exercise interventions in MDD. Methods: Within a larger project, 111 (53female) MDD outpatients and 56 (34female) healthy controls performed an n-back task (0-, 1-, 2-, 3-back) during functional Magnetic Resonance Imaging. Physical fitness from a graded exercise test on a cycle ergometer was performed by 106 MDD patients. Results: Patients showed reduced performance particularly at high loads of the n-back WM task and prolonged reaction times at all n-back loads. A whole-brain interaction analysis of group by WM load revealed reduced neural activity in six frontoparietal clusters at medium and high WM loads in MDD patients compared to healthy controls. Analysis of covariance within the MDD sample showed that physical fitness was associated with neural activity in right and left superior parietal lobules. Externally defined Regions of Interest confirmed this analysis. Conclusions: Results indicate frontoparietal hypoactivity in MDD at high demands, arguing for decreased WM capacity. We demonstrate a parietal fitness correlate which could be used to guide future research on effects of exercise on cognitive functioning in MDD

    Landau-Zener transitions in qubits controlled by electromagnetic fields

    Get PDF
    We investigate the influence of a dipole interaction with a classical radiation field on a qubit during a continuous change of a control parameter. In particular, we explore the non-adiabatic transitions that occur when the qubit is swept with linear speed through resonances with the time-dependent interaction. Two classical problems come together in this model: the Landau-Zener and the Rabi problem. The probability of Landau-Zener transitions now depends sensitively on the amplitude, the frequency and the phase of the Rabi interaction. The influence of the static phase turns out to be particularly strong, since this parameter controls the time-reversal symmetry of the Hamiltonian. In the limits of large and small frequencies, analytical results obtained within a rotating-wave approximation compare favourably with a numerically exact solution. Some physical realizations of the model are discussed, both in microwave optics and in magnetic systems.Comment: 12 pages, 5 figure

    Decreased expression of breast cancer resistance protein in the duodenum in patients with obstructive cholestasis

    Get PDF
    Background/Aims: The expression of transporters involved in bile acid homeostasis is differentially regulated during obstructive cholestasis. Since the drug efflux transporter breast cancer resistance protein (BCRP) is known to transport bile acids, we investigated whether duodenal BCRP expression could be altered during cholestasis. Methods: Using real-time RT-PCR analysis we determined mRNA expression levels in duodenal tissue of 19 cholestatic patients. Expression levels were compared to 14 healthy subjects. BCRP protein staining was determined in biopsies of 6 cholestatic and 6 healthy subjects by immunohistochemistry. Results: We found that in patients with obstructive cholestasis mean duodenal BCRP mRNA levels were significantly reduced to 53% and mean protein staining was reduced to 57%. Conclusions: BCRP, a transporter for bile acids and numerous drugs, appears to be down-regulated in the human duodenum during cholestasis. The clinical impact of these results has to be investigated in further studies. Copyright (c) 2006 S. Karger AG, Basel

    Quantum search by measurement

    Get PDF
    We propose a quantum algorithm for solving combinatorial search problems that uses only a sequence of measurements. The algorithm is similar in spirit to quantum computation by adiabatic evolution, in that the goal is to remain in the ground state of a time-varying Hamiltonian. Indeed, we show that the running times of the two algorithms are closely related. We also show how to achieve the quadratic speedup for Grover's unstructured search problem with only two measurements. Finally, we discuss some similarities and differences between the adiabatic and measurement algorithms.Comment: 8 pages, 2 figure
    corecore