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Abstract. We investigate the influence of a dipole interaction with a classical
radiation field on a qubit during a continuous change of a control parameter.
In particular, we explore the non-adiabatic transitions that occur when the
qubit is swept with linear speed through resonances with the time-dependent
interaction. Two classic problems come together in this model: the Landau—
Zener (LZ) and the Rabi problem. The probability of LZ transitions now depends
sensitively on the amplitude, the frequency and the phase of the Rabi interaction.
The influence of the static phase turns out to be particularly strong, since this
parameter controls the time-reversal symmetry of the Hamiltonian. In the limits
of large and small frequencies, analytical results obtained within a rotating-
wave approximation compare favourably with a numerically exact solution. We
discuss physical realizations in microwave optics, quantum dots and molecular
nanomagnets.
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1. Introduction

An essential ingredient to a quantum computer is a set of parameters that is controllable in the
sense that it is possible to manipulate the parameter values at any time such that the qubits
undergo one-qubit or two-qubit gate operations. For quantum computer implementations that
rely on nuclear magnetic resonance [1] or on spins in quantum dots [2], such a manipulation
is possible by switching magnetic fields that act on the qubit. This includes the possibility of
inverting the sign of the field. Thereby, the diabatic energy levels of the qubit typically cross. If
at the same time a second magnetic field acts in any other direction, the adiabatic levels form
an avoided crossing instead of an exact crossing. Then, depending on the speed at which the
control parameters are manipulated, the state of the qubit can follow the adiabatic energy levels
or undergoes a non-adiabatic, so-called Landau—Zener (LZ) transition to the opposite branch
([3]1-[51, [7] see also [6].7)

In the context of quantum computation, it has been proposed to exploit LZ transitions
for improving the readout of qubits via the so-called Zener flip quantum tunnelling [8]. This
mechanism has recently been implemented for flux qubits [9]. A method for non-adiabatic
electron manipulation in quantum dots also relies on LZ transitions [10]. Moreover, the
observation of LZ transitions is a clear sign of coherence like, e.g., optical coherence in a classical
optical-ring resonator [11] or macroscopic quantum coherence in superconducting loops [12, 13].
LZ transitions have also been used to determine tiny interactions between levels in molecular
clusters [14, 15]. While in these cases, LZ transitions are beneficial, the opposite is true in the case
of adiabatic quantum computing [16, 17]. There, the computation is performed by a quantum
system that follows adiabatically the instantaneous ground state of a slowly varying Hamiltonian
and, consequently, the emergence of any non-adiabatic transition constitutes an error source.

The physical origin of a coupling between two levels of a quantum system is not necessarily
simply an overlap between the respective wave functions. In particular for spins and atoms,
such a coupling typically stems from the dipole interaction of the system with a radiation field.

> This paper contains an exact solution of the LZ model based on a perturbation expansion including all orders.
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In a seminal work [18] (see also [19]), Rabi predicted within an exact quantum mechanical
treatment that a classical, monochromatic and circularly polarized radiation field induces spin
rotations with a frequency which at resonance is proportional to the field amplitude. With resonant
linearly polarized light, the same characteristic harmonic Rabi oscillations of atomic inversions
are observed. As a consequence of the linearly polarized driving, the optical realization of
the Rabi problem is not exactly solvable. For resonant excitations, however, it is possible to
apply a rotating-wave approximation (RWA) which formally restores the situation with circular
polarization [20, 21]. This necessarily neglects effects beyond RWA like the Bloch—Siegert shift
of the resonance frequency. In optical realizations, however, such effects are very tiny [20, 22].

The question now arises whether a level interaction mediated by a classical monochromatic
radiation field can induce LZ transitions in a two-level system as its energies cross. In this work,
we demonstrate that this is indeed the case. Thereby, we investigate LZ transitions that are induced
by the coupling of a spin to a linearly polarized light field, henceforth referred to as Rabi coupling.
In the traditional LZ problem, non-adiabatic transitions occur when the adiabatic energy levels
are close to each other. By contrast, we will find that with a Rabi coupling to a high-frequency
field, the transitions take place at times at which the radiation field is at resonance with the
diabatic energy levels. This allows for sufficiently weak coupling a perturbative treatment within
a RWA. For suitably chosen parameters, the driving reduces the probability for LZ transitions
which relates this problem to the so-called coherent destruction of tunnelling [23]—-[25].

A different kind of time-dependence would be provided by coupling the two-level system to
a noise source. In this paper, we will work in the limit relevant for quantum computation instead,
namely the coherent limit. In relation to this, it is interesting to note that LZ tunnelling is fairly
robust against classical noise [6], [26]-[28] and quantum dissipation [29]—[35]. In this context,
we also like to emphasize that herein considered LZ tunnelling due to coupling to a light field is
different from the one considered in [13, 36, 37] where it is the diabatic energies of the two-level
system that are subjected to a time-periodic modulation (the so-called dynamic Stark effect).

The model considered here applies quite generally to qubits that are driven by two external
fields: firstly, the interaction between the two levels varies harmonically in time due to interaction
with a transverse external field that causes a negligible dynamic Stark effect. Secondly, the qubit
level spacing is controlled by an external field that varies linearly in time. Without driving, the
interaction between the levels should be negligible. Possible realizations of such well-controlled
two-level systems are of interest for quantum-information processing. Examples are not only the
natural spin—% systems in magnetic fields, but also effective two-level systems in nanostructures,
such as coupled quantum dots, quantum wires, or quantum wells. These solid-state qubits have
received heightened attention recently, since they can be well controlled and potentially be scaled
up to larger quantum systems. Much work on such driven quantum systems deals with transport
problems [7], [38]-[40]. In the discussion at the end of the paper, we detail some physical
realizations of our scheme.

2. The LZ model with harmonic interaction modulation
We consider a quantum system (‘atom’) with two relevant energy levels |1) and |2) whose time-

dependent energies +=V#/2 cross at ¢t = 0. Both levels are coupled by a classical dipole field with
frequency €2 and phase ¢. The effective amplitude g is given by field strength times the dipole
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moment of the two-level system. Thus, the Hamiltonian reads

%
H(t) = ?az + f(t)oy,, f(t) = gcos(Q2t + @), (1)
where o,|1) = |1) and 0,|2) = —|2). Moreover, we assume that at time ¢t = —oo, the system

is in its instantaneous ground state, i.e. |[(—o0)) = |1). If the energies in the first term were
time-independent, and if the field were in resonance with the atomic energy difference, then this
Hamiltonian would describe an atom undergoing Rabi oscillations. If the field strength of the
ac field vanished, then no transitions between the levels could occur, which means that the
Hamiltonian (1) models a special type of ‘photon-assisted transport’ [38].

Since for most times, the Hamiltonian (1) is dominated by its first term, a proper interaction-
picture representation is provided by the transformation Uy(f) = exp(—iVt?o./2H), that is
Y (t)) = Uo(t)|1,5(t)) and |1ﬁ(t)) = ¢1(t)|1) + c,(1)|2), where the interaction-picture probability
amplitudes obey

(Cl) __ 1 0 fr) eV (cl 2
¢y - h f(l) e—inz/Zh 0 52) ’ @)

For Q = ¢ = 0, the Hamiltonian (1) defines the standard L.Z problem for which the exact solution
of the equation of motion (2) can be expressed in terms of parabolic cylinder functions [3]. Then,
the time-evolution from t = —o0 to t = oo is given by the S-matrix

oom (e, T

T\vr=qer @ )

where g = exp(—2mg?/hiV) and the Stokes phase x = /4 +arg'(1 —i8) +8(In§ — 1), with

8§ =g*/(hV) and I'(..) the Gamma function. The famous LZ transition probability follows
readily: the probability P that the atom ends up in the initially unoccupied level |2) is

3)

P=|c(t =00)) =1—e /MY, “

Note that this result is exact for all values of g and V.

Already a good approximation to the time-dependent solution is provided by the fact that for
f(t) = g and sufficiently large times, the phase factors in the matrix in equation (2) are rapidly
oscillating with a quadratic time dependence. As a consequence, ¢; and ¢, remain essentially
constant. By contrast, close to t = 0, these phase factors assume stationary values and the two-
level system undergoes a transition. This means that S-matrix (3) in fact describes a transition
taking place at 7 = 0. Thus, in the interaction picture the dynamics is approximately given by
[ (1)) = | (—00)) for t < 0 and |y (2)) = S,|¥(00)) for ¢ > 0.

For © # 0, the time r = 0 no longer marks the time at which the phase is stationary and
the behaviour changes significantly, as we will see below. In order to anticipate the richness of
the resulting dynamics, we have numerically integrated the equations of motion (2) for ¢ =0
and various coupling strengths g and frequencies €2. Figure 1 depicts the time dependence of the
probability |c,(#)|? to find the atom in the initially unpopulated level |2).

For small interaction g (see lower five plots in figure 1), the final-transition probability for
long times does not depend strongly on frequency, although the curves differ strongly around
t = 0. The most interesting feature of figure 1 is that for high frequencies, Q2 > /V/h, the
dynamics consists of two (almost) independent transitions.

New Journal of Physics 7 (2005) 218 (http://www.njp.org/)
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Figure 1. LZ transition probability |c,(¢)|* as a function of time in units of
(5i/V)'/? for ¢ =0 and various values of the interaction strength g in units
(V)2 and the modulation frequency € in units of (V/ i)!/2. The red lines
mark the standard LZ-transition probability (equation (4), dashed), the RWA
result for a double transition (equation (9), solid), and the transition probability
at the intermediate stage (equation (10), dotted). The green curves in the four
upper-left panels correspond to the adiabatic-following result equation (5).

3. Adiabatic versus non-adiabatic transitions

In the standard LZ problem, one distinguishes two limiting cases: if the level crossing occurs
very rapidly, the potential switches practically instantaneously such that no significant dynamics
can take place. The system will then remain in level |1), so that finally P = 0. In the opposite
limit the instantaneous energy levels change very slowly. The system then follows adiabatically
the lower-energy level |E_(#)) and ends up with P = 1.

3.1. Adiabatic following

Adiabatic following means that transitions between the instantaneous eigenstates can be
neglected. The criterion for adiabatic following is that at each instance of time, the coupling
between the adiabatic energies is ‘sufficiently small’, much smaller than the energy splitting.
Stated in mathematical terms, this requirement becomes |( E_ (t)|%|E+(t))| L |E (1) — E_()]/h.
This gives for the standard LZ problem a splitting 2¢ and the adiabaticity condition
V< g

For the time-dependent two-state Hamiltonian (1), the condition for adiabatic following
becomes more involved, because the minimal splitting of the adiabatic energies E.(f) =
:I:\/ (Vt/2)? + f2(t) depends not only on the coupling strength g but also on the frequency 2
and the phase ¢. The minimal splitting will never be larger than 2g, whatever the frequency and
phase. The sensitive dependence on the phase becomes obvious from figure 2: in particular
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Figure 2. Adiabatic energies E_(¢) for a Rabi coupling with ¢ = 0 (solid lines)
and ¢ = /2 (dashed). The dotted lines marked the limiting values for g = 0 and
the standard LZ model with constant coupling, respectively. The other parameters

are g = 4+/hV and Q = 0.5,/V/h.

for ¢ = /2, the adiabatic spectrum no longer exhibits an avoided crossing but rather an
exact crossing, since at time ¢t = 0 both terms in the Hamiltonian (1) vanish simultaneously.
Consequently, the adiabaticity condition is violated irrespective of the values of the g and €2.
This qualitative difference already provides a hint that the phase ¢ has a strong influence on the
population dynamics.

By contrast, for a phase ¢ # 7/2(mod ), the energies £ never form an exact crossing.
Thus, it is always possible to choose V and €2 so small that the adiabaticity condition is fulfilled.
Then, by making the time-dependent transformation to the instantaneous-energy representation,
neglecting there the off-diagonal elements in the equations of motion, solving the dynamics and
then transforming back to the diabatic representation, it follows that the probability |c,(f)|? to
find the qubit in diabatic state |2) goes from zero to one as

1 Vt
adiabatic (£ == 1 . 5
|€2,adiabatic () | > ( + (Vt)2+4f2(t)) (5)

The dependence for intermediate times on the interaction modulation f(¢) is clearly seen. The
four upper-left panels in figure 1 with 2 = 0 or 0.5 and g = 1 or 4 are very well described by
the adiabatic-following result (5).

3.2. Non-adiabatic regime

For phase ¢ = 0, the Rabi coupling f(7) is zero at time t = 7r/2€2 and the energy splitting becomes
'V/22. This means that for a large driving frequency 2 > /V/h, the adiabaticity condition is
violated. The data shown in the right columns of figure 1 indicate that in this regime the dynamics
consists of two transitions at times /2 /V. If the time 272 /V between the individual transitions
is sufficiently large, as specified below, the two transitions are essentially independent of each
other. Then, it is possible to derive within a RWA an analytical expression for the final transition
probability. The derivation is closely related to the transfer-matrix method employed in [36, 41].

New Journal of Physics 7 (2005) 218 (http://www.njp.org/)
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With the new variables d;(¢f) = ¢, exp(ii2?/4V) and d,(f) = ¢, exp(—ihQ2?/4V), one
obtains from equation (2) the equations of motion

d'l — _iﬁ[eiwmm/vﬂ/zh 4 eV hQ/V)z/Zh]dz, (6)
2h
d‘2 _ _i%[e—i\/(m hQ/V)2)2h +e—iV(t— hQ/V)z/Zh]dl‘ (7)

Like in equation (2), the phases on the right-hand side obey a quadratic time dependence. Thus,
with the arguments provided after equation (3), we can conclude that each phase factor is
relevant only at times at which the phase is stationary, i.e., the first term contributes only at
time - = — h<2/V, while the second term becomes relevant at time 7, = 72 /V. Thus, we keep
at both times 7_ and ¢, only the respective resonant term while the ‘counter-rotating’ term is
neglected. (In this case, two separate RWAs are needed corresponding to ¢, and 7z_.) Then, at
times close to 7, the equation of motion is of the same form as equation (2) and the dynamics
is determined by the S-matrix (3) with g replaced by g/2, i.e. S; = S,/>. Consequently within
the transfer-matrix approximation, the time evolution becomes

[ (—00)) fort < —hQ)V,
U (1)) = {Sepnl(—00)) for —hAQ/V <t < BQ)V, (8)
ngzltﬂ(—oo)) fort > hQ)V.

With this expression, the probability to find the system at time ¢ = oo in state |2) is readily
evaluated as

P =Q2ISI)P =47 (1 — T 2Y), )

During the intermediate times —h€S2/V <t < hS2/V, the occupation probability of level |2)
becomes

Py = |28, 1)|* = 1 — exp(—7g? /2R V). (10)

Note that in these expressions, the exponent differs from the exponent in equation (4) by a factor
1/4. Moreover, P in equation (9) no longer depends monotonously on the coupling strength as in
the standard LZ problem, but rather assumes a maximum for exp(—mg?/2hiV) = % Interestingly
enough, the transfer-matrix results are independent of the Stokes phase x and the modulation
frequency 2. The independence of the frequency is confirmed by figure 1, where the transfer-
matrix results (red lines) nicely agree with the exact results (blue lines) for 2 = 2, 10 and 40.
Clearly, at long times, the probability |c,|? is a function of only the coupling strength g.

Below, we will compare more systematically the transition probabilities obtained from
the transfer-matrix method with a numerically exact solution. But first we have to specify
the conditions under which the time between two LZ transitions will be long enough for the
transfer-matrix analysis to hold. It should be remembered that LZ transitions neither occur
instantaneously nor take infinitely long [42]-[44]. The time 2/ 2 /V between the two-consecutive
transitions should be larger than the duration of a single transition. It has been estimated that the
standard LZ transition has a typical duration 7,z >~ /% /V, when non-adiabatic transitions are
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Figure 3. Final-transition probability P as a function of coupling g, for several
values of the interaction-modulation frequency €2. The dashed line marks the
standard LZ-transition probability (4) valid for € = 0. The transfer-matrix
result (9) coincides with the numerical result for & = 40. (The numerical time
integration was performed from times —500./7/V to +500./7/V).

probable (i.e. for 2g2/(hV) « 1), while 117 2~ 2g/V in the adiabatic limit 2g*/(AV) > 1 [42].
Correspondingly, reliable results of the transfer-matrix approach are to be expected if

Q2> /V/@4h)  forg’/2hV) < 1, (11)
Q> g/ for g2/(2AV) > 1. (12)

These estimates are confirmed by the numerical solution of equation (2) as plotted in figure 3,
which depicts the probability of finding the system in state |2) at large times. The figure makes
clear that for small coupling strengths g < +/ 7V the condition (11) is sufficient but not necessary,
because equation (9) is seen to be accurate irrespective of the frequency. This is in accordance
with the lower five panels in figure 1 and with fact that the standard LZ result (4) and the transfer-
matrix expression (9) agree that P equals 27rg?/ V to first orderin g? /V. On the other hand, we find
significant deviations from the expression (9) once g becomes larger than +/ AV and of the order
h<2. This is where the two LZ transitions start to ‘feel’ each other. For sufficiently large coupling,
the transition probability even increases again and assumes further maxima with P = 1. Itis nice
that the argument can be turned around and that LZ times can be estimated with the help of the
frequencies at which the exact and the transfer-matrix results start to deviate. In doing so, we
indeed find (here and in section 4) that 7 ; >~ 2g/V for 2g>/(hV) > 1, in agreement with [42].
Thus, the present model provides an independent and simple method to determine LZ times.

4. Exploring the crossover region

Our analysis has identified two different parameter regimes in which the analytical solution is
confirmed by our numerical results. Firstly, there is the regime of slow driving in which 7€
denotes the smallest energy scale of the problem. Then, the time dependence of the coupling is
not essential and the transition probabilities are the same as in the standard LZ problem. In the
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Figure 4. Final-transition probability P as a function of coupling strength g and
frequency €2. Blue areas correspond to P = 1, white areas to P = 0.

second regime %<2 is the largest energy scale and the transfer-matrix results hold. In particular,
we find P = 1 for mg? = 2/iV In2. In this section, we complement our analytical findings by
numerical results for the intermediate-parameter regime.

Figure 4 shows the final transition probability, that is the occupation of state |2) in the limit
t — 00, as a function of both coupling strength g and frequency 2. The curves in figure 3 present
vertical cuts through figure 4. The time interval for numerical integration was chosen the same as
for figure 3. The vertical stripe with P = 1 for 2 < 0.5 corresponds to the adiabatic regime. The
horizontal blue stripe marks the maximum found within the transfer-matrix approach. The figure
also confirms (i) that the location of the maximum has no significant frequency dependence
and (i1) that P decays for a larger coupling g almost to zero, yielding the white region with
P = 0 above the horizontal blue band, in agreement with the transfer-matrix prediction (9).
Increasing g further, we find that at g &~ /12, the transition probability again assumes values close
to unity. This regime, including the sequence of maxima and minima that can be observed for
even larger coupling, is beyond the range of validity of the transfer-matrix method. The fact that
the transfer-matrix approach starts to break down along the diagonal g = %<2 in figure 4 neatly
agrees with the estimate (12). With the reasoning given in section 3.2, we can infer from figure 4
that the estimate for the LZ time 7.z =~ 2g/V [42] holds at least in the broad-parameter regime
1 < g?/hV < 100.

5. Phase dependence

When discussing the adiabatic energies of the Hamiltonian (1), we have already anticipated that
the phase ¢ might have some relevance which we explore in the following. For that purpose, we
adapt the analytical approach of section 3.2 accordingly.

New Journal of Physics 7 (2005) 218 (http://www.njp.org/)
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5.1. Transfer-matrix approach

Inserting again the definitions d; = ¢, exp(ii2*/4V) and d> = ¢, exp(i/i2?/4V) into the
equation of motion (2), we find

d'l _ —ii[eiw” 1/ V)2 /2 h+ig +eiV(t— hQ/V)2/2h—i¢] . (13)
2h
d‘2 _ _i%[e—iwm Q2 V)2 /2 h—ig e Vi hQ/V)2/2h+i¢>] d. (14)

These equations differ from equation (2) merely by the phase ¢ in the exponents. The goal is now
to transform equations (13) and (14) such that they assume at times t- = F/2/V the same form
as equations (6) and (7). After such a transformation the transfer-matrix method could be used
again. At time ¢_, when only the first term in the equations of motion is relevant, an appropriate
transformation reads

g2
T = (e . ew)- (15)

The corresponding transfer matrix S_ follows from a transformation of S,,, with T and reads
S_ = T_ISg ,2T. With the same reasoning, we find that at time 7, the required transformation
is T~' and the transfer matrix is S, = TSg/szl. Consequently, the complete time evolution
becomes |(00)) = S,S_|¥(—00)). This leads to the final transition probability

P=4e /(1 —e /) cos? . (16)

Clearly, the phase shift modifies the transition probability by a factor cos® ¢. At intermediate
times, the occupation is determined by S_. Interestingly enough, the absolute values of its
matrix elements do not depend on ¢ and, thus, we find at t = O the same phase-independent
transition probability P;, asin (10). Evidently, the phase dependence in (16) is caused by quantum
interference between the two transition paths from |1) to |2), which also explains the absence of
any phase dependence after the first transition.

Figure 5 shows a comparison with the numerically computed time evolution. The long-time
limits compare favourably with our prediction for the final state. As for the special case ¢ = 0,
the final occupation is independent of the frequency, provided that €2 exceeds g/h and /V/h.

The strong-phase dependence in (16) may come as a surprise, since it is tempting to argue
that for high frequencies, phase relations should be immaterial due to the many oscillations
occurring during each LZ transition. However, figure 5 clearly demonstrates that such reasoning
is incorrect.

5.2. Time-reversal anti-symmetry

The transition probability (16) obviously vanishes for ¢ = /2. This behaviour can already been
obtained from symmetry arguments. For this phase, the Hamiltonian (1) is anti-symmetric under
time reversion t — —t, i.e., H(f) = —H(—t). Then the time evolution operators U(z, 0) and
U(—t, 0) obey the same equation of motion. Moreover, they obviously are identical and equal
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Figure 5. Transition probability as a function of time for g/+/ AV =
[2In (2)/7]"/? ~ 0.664 and driving frequency Q = 10./V/i . The transfer-
matrix method predicts the intermediate population |c,(0)|*> = 0.5 and the final-
transition probabilities 1, 0.75, 0.25 and 0, respectively.

to 1 at t = 0. The equalities U(oo, 0) = U(—00, 0) = U'(0, —oo) follow immediately, the last
one from unitarity. Consequently, we find

U(oo, —00) = U(co, 0)U(0, —o0) = UT(0, —o0)U(0, —o0) =1, (17)

which implies that at long times, the system will evolve back to its initial state.

This ideal back-evolution relates our problem to the Loschmidt echo which has been
employed for testing the sensitivity of a ‘chaotic’ quantum system on weak perturbations [45].
In the present case, the small parameter is 8¢ = ¢ — /2 which corresponds to the perturbation
Hamiltonian ¥ = —2g cos(€2¢) sin(§¢)o .. Note, however, that the present system does not exhibit
any sensitive exponential dependence on the perturbation.

6. Discussion and summary

Our study of diabatic level crossing in a system subject to a time-dependent dipole force
revealed two intriguing features. Firstly, the probability for non-adiabatic transitions is not
simply a monotonous function of the coupling strength but exhibits several maxima and
minima. In particular, it vanishes for zero coupling and equals unity if the relation g/~/ AV =
[2In(2) /7‘[]1/ 2 ~ 0.664 is fulfilled. This is in contrast to the standard LZ problem where the
extreme cases require a vanishing or an infinite interaction strength. Secondly, we found that
the phase ¢ of the dipole field has a significant influence on the transition probability which is
proportional to cos? ¢. The combination of both effects enables one to steer the system towards
the one or the other final state. In turn, it is also possible to use the setup as a diagnostic tool for
an unknown phase of a radiation field. The fact that the results of the transfer-matrix approach
are only valid if the duration 717 of a single LZ transition is sufficiently small, provides a further
application. Measuring the frequency at which the approximation breaks down, allows one to
determine ;7.

New Journal of Physics 7 (2005) 218 (http://www.njp.org/)


http://www.njp.org/

12 Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Practical requirements for the applicability of our model are that the measurements (a)
occur on a short enough time scale such that decoherence can be neglected, but (b) are slow
enough such that the sweep rates of the driving fields are smaller than some values fixed by
the experimental setup. Theoretical requirements for optimal observation of phase-dependent
final-transition probabilities are (i) that there are two (almost) independent LLZ transitions,
separated by many periods of the interaction, in other words that the frequency €2 should be
much larger than \/V/h, and (ii) that g/\/h_V ~ 0.664 (see section 5).

A straightforward physical realization of our set-up is naturally provided by spin—%
systems in time-dependent magnetic fields, with one magnetic field H,(¢) increasing linearly
and a perpendicular field H,(f) = H, cos(2t + ¢) oscillating harmonically in time. Moreover,
one could think of similar experiments with effective low-spin systems such as molecular
nanomagnets [14, 46, 47]. Indeed, it would be interesing to repeat the recent resonant-photon
absorption experiments on the effective spin—% molecular complex Vs [47], this time with a
non-negligible sweep rate of the longitudinal magnetic field H..

To be concrete, for a sweep rate of 1 Ts~!', a number of oscillations /4/V/hi = 10 as
assumed in our figure 5, and for a parameter y = g.up/(4nh) = 28.3 GHz T~! as measured for
Visin[47], one would need a very low frequency €2 ~ 5 MHz, with corresponding temperature far
below the mK regime. One can choose a higher frequency so that requirement (i) is satisfied even
better, thereby increasing the time interval between the two LZ transitions. This time, however,
is limited by requirement (a). For example, in the very recent LZ tunnelling measurements on
molecular nanomagnets with the effective spin S = 9/2 [48], the time between the LZ transitions
is much too long for coherence effects in successive LZ transitions to be observable. Indeed,
experiments on molecular nanomagnets are usually performed in the incoherent tunnelling
regime, which is studied theoretically in [49, 50]. Still, we are convinced that our predicted
phase-dependent effects can be observed in spin—% systems such as the molecular complex Vs,
by experiments at lower temperatures, lower frequencies, and higher sweep rates than those used
in [48].

Another solid-state qubit to which our model might apply is a double-quantum dot [51]. This
system is very well suited for LZ type experiments, because the energy level separation can be
controlled simply by varying gate voltages. However, it might be a challenge to couple the levels
via a transverse harmonic field. External fields usually couple to the qubit longitudinally [51],
thereby bringing closer a realization of the harmonically perturbed LZ model [52], although
energy changes might not be the only effects of the time-dependent external fields (see the
discussion in section 2.4.1 of [40]). LZ processes in coupled quantum dots with time-varying
tunnel couplings have been studied [53], but a difference with our model is that tunnel couplings
do not change their signs. More promising realizations of our model are two-level systems found
in double-quantum wells [38, 54], where the two levels can indeed be coupled by transverse
electromagnetic fields (see also [55]).

A final possible realization is given by Rydberg atoms in the vicinity of a crossing of the
highest Stark level in the nth manifold of the atom and the lowest Stark level of the (n + 1)th
manifold [56, 57]. In this case, the energies are swept by the dc Stark effect and the interaction is
driven by a harmonically varying microwave field. Then, the strong suppression of non-adiabatic
transitions can be tested experimentally. Particularly promising in this respect would be variants
of microwave ionization experiments of Rydberg atoms that are based on a mechanism of multiple
LZ transitions to higher and higher Stark manifolds [57].
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To summarize, we have studied LZ transitions in a two-level atom subject to a harmonically
time-dependent, Rabi-like interaction. As a main difference to the standard LZ problem, we find
that by tuning the coupling strength within a relatively small range, it is possible to continuously
change the transition probability from zero to unity. This behaviour can be explained within a
transfer-matrix approach, which provides reliable results provided that the driving frequency is
sufficiently large. Moreover, this analytical approach allows one to determine the influence of
the phase relation between the diabatic energy crossing and the dipole field. It revealed that the
transition probability is proportional to cos? ¢ and therefore will vanish for ¢ = /2. The latter
result was also shown by analysing the underlying time-reversal symmetry. The sensitive-phase
dependence can be exploited both for steering the system towards a particular state and for
measuring an a priori unknown phase relation.
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