9,423 research outputs found

    Stored energies for electric and magnetic current densities

    Full text link
    Electric and magnetic current densities are an essential part of electromagnetic theory. The goal of the present paper is to define and investigate stored energies that are valid for structures that can support both electric and magnetic current densities. Stored energies normalized with the dissipated power give us the Q factor, or antenna Q, for the structure. Lower bounds of the Q factor provide information about the available bandwidth for passive antennas that can be realized in the structure. The definition that we propose is valid beyond the leading order small antenna limit. Our starting point is the energy density with subtracted far-field form which we obtain an explicit and numerically attractive current density representation. This representation gives us the insight to propose a coordinate independent stored energy. Furthermore, we find here that lower bounds on antenna Q for structures with e.g. electric dipole radiation can be formulated as convex optimization problems. We determine lower bounds on both open and closed surfaces that support electric and magnetic current densities. The here derived representation of stored energies has in its electrical small limit an associated Q factor that agrees with known small antenna bounds. These stored energies have similarities to earlier efforts to define stored energies. However, one of the advantages with this method is the above mentioned formulation as convex optimization problems, which makes it easy to predict lower bounds for antennas of arbitrary shapes. The present formulation also gives us insight into the components that contribute to Chu's lower bound for spherical shapes. We utilize scalar and vector potentials to obtain a compact direct derivation of these stored energies. Examples and comparisons end the paper.Comment: Minor updates to figures and tex

    Asymptotic behavior of nucleon electromagnetic form factors in time-like region

    Full text link
    We study the asymptotic behavior of the ratio of Pauli and Dirac electromagnetic nucleon form factors, F2/F1F_2/F_1, in time-like region for different parametrizations built for the space-like region. We investigate how fast the ratio F2/F1F_2/F_1 approaches the asymptotic limits according to the Phragm\`en-Lindel\"of theorem. We show that the QCD-inspired logarithmic behavior of this ratio results in very far asymptotics, experimentally unachievable. This is also confirmed by the normal component of the nucleon polarization, PyP_y, in e++eN+Nˉe^++e^-\to N+\bar{N} (in collisions of unpolarized leptons), which is a very interesting observable, with respect to this theorem. Finally we observe that the 1/Q parametrization of F2/F1F_2/F_1 contradicts this theorem.Comment: 9 pages, 1 figur

    Stored Electromagnetic Energy and Antenna Q

    Full text link
    Decomposition of the electromagnetic energy into its stored and radiated parts is instrumental in the evaluation of antenna Q and the corresponding fundamental limitations on antennas. This decomposition is not unique and there are several proposals in the literature. Here, it is shown that stored energy defined from the difference between the energy density and the far field energy equals the new energy expressions proposed by Vandenbosch for many cases. This also explains the observed cases with negative stored energy and suggests a possible remedy to them. The results are compared with the classical explicit expressions for spherical regions where the results only differ by ka that is interpreted as the far-field energy in the interior of the sphere. Numerical results of the Q-factors for dipole, loop, and inverted L-antennas are also compared with estimates from circuit models and differentiation of the impedance. The results indicate that the stored energy in the field agrees with the stored energy in the Brune synthesized circuit models whereas the differentiated impedance gives a lower value for some cases. The corresponding results for the bandwidth suggest that the inverse proportionality between bandwidth and Q depends on the relative bandwidth or equivalent the threshold of the reflection coefficient. The Q from the differentiated impedance and stored energy are most useful for relative narrow and wide bandwidths, respectively

    Stored energies in electric and magnetic current densities for small antennas

    Full text link
    Electric and magnetic currents are essential to describe electromagnetic stored energy, as well as the associated quantities of antenna Q and the partial directivity to antenna Q-ratio, D/Q, for general structures. The upper bound of previous D/Q-results for antennas modeled by electric currents is accurate enough to be predictive, this motivates us here to extend the analysis to include magnetic currents. In the present paper we investigate antenna Q bounds and D/Q-bounds for the combination of electric- and magnetic-currents, in the limit of electrically small antennas. This investigation is both analytical and numerical, and we illustrate how the bounds depend on the shape of the antenna. We show that the antenna Q can be associated with the largest eigenvalue of certain combinations of the electric and magnetic polarizability tensors. The results are a fully compatible extension of the electric only currents, which come as a special case. The here proposed method for antenna Q provides the minimum Q-value, and it also yields families of minimizers for optimal electric and magnetic currents that can lend insight into the antenna design.Comment: 27 pages 7 figure

    Polarization observables in lepton-deuteron elastic scattering including the lepton mass

    Full text link
    Expressions for the unpolarized differential cross section and for various polarization observables in the lepton-deuteron elastic scattering, +D+D\ell+D\to \ell+D, =e\ell=e, μ\mu, τ\tau, have been obtained in one-photon-exchange approximation, taking into account the lepton mass. Polarization effects have been investigated for the case of a polarized lepton beam and polarized deuteron target which can have vector or tensor polarization. Numerical estimations of the lepton mass effects have been done for the unpolarized differential cross section and for some polarization observables and applied to the case of low energy muon deuteron elastic scattering.Comment: 29 pages, 6 figur

    Future acidification of the Baltic Sea - A sensitivity study

    Get PDF
    Future acidification of coastal seas will depend not only on the development of atmospheric CO2 partial pressure (pCO(2)), but also on changes in the catchment areas, exchange with the adjacent ocean, and internal cycling of carbon and nutrients. Here we use a coupled physical-biogeochemical Baltic Sea model to quantify the sensitivity of pH to changes both in external forcing and internal processes. The experiments include changes in runoff, supply of dissolved inorganic carbon (DIC) and total alkalinity (A(T)), nutrient loads, exchange between the Baltic and North Seas, and atmospheric pCO(2). We furthermore address the potential different future developments of runoff and river loads in boreal and continental catchments, respectively. Changes in atmospheric pCO(2) exert the strongest control on future pH according to our calculations. This CO2-induced acidification could be further enhanced in the case of desalination of the Baltic Sea, although increased concentrations of A(T) in the river runoff due to increased weathering to some extent could counteract acidification. Reduced nutrient loads and productivity would reduce the average annual surface water pH but at the same time slightly increase wintertime surface water pH (the annual pH minimum). The response time of surface water pH to sudden changes in atmospheric pCO(2) is approximately one month, whereas response times to changes in e.g. runoff and A(T)/DIC loads are more related to residence times of water and salt (> 30 years). It seems unlikely that the projected future increase in atmospheric pCO(2) and associated pH reduction could be fully counteracted by any of the other processes addressed in our experiments.Peer reviewe

    From theory to experiment: hadron electromagnetic form factors in space-like and time-like regions

    Get PDF
    Hadron electromagnetic form factors contain dynamical information on the intrinsic structure of the hadrons. The pioneering work developed at the Kharkov Physical-Technical Institute in the 60's on the relation between the polarized cross section and form factors triggered a number of experiments. Such experiments could be performed only recently, due to the progress in accelerator and polarimetry techniques. The principle of these measurements is recalled and the surprising and very precise results obtained on proton are presented. The actual status of nucleon electromagnetic form factors is reviewed, with special attention to the basic work done in Kharkov Institute.Comment: 10 pages, 2 figures, prepared for the QEDSP2006 conference, Kharkov, Ukraine, September 19-23, 200
    corecore