2,139 research outputs found

    An investigation on the mechanics of nanometric cutting and the development of its test-bed

    Get PDF
    The mechanics of machining at a very small depth of cut (100 nm or less) is not well understood. The chip formation physics, cutting forces generation, resulting temperatures and the size effects significantly affect the efficiency of the process and the surface quality of the workpiece. In this paper, the cutting mechanics at nanometric scale are investigated in comparison with conventional cutting principles. Molecular Dynamics (MD) is used to model and simulate the nanometric cutting processes. The models and simulated results are evaluated and validated by the cutting trials on an atomic force microscope (AFM). Furthermore, the conceptual design of a bench-type ultraprecision machine tool is presented and the machine aims to be a facility for nanometric cutting of threedimensional MEMS devices. The paper concludes with a discussion on the potential and applications of nanometric cutting techniques/equipment for the predictabilty, producibility and productivity of manufacturing at the nanoscale

    An investigation on the mechanics of nanometric cutting and the development of its test-bed

    Get PDF
    The mechanics of machining at a very small depth of cut (100 nm or less) is not well understood. The chip formation physics, cutting forces generation, resulting temperatures and the size effects significantly affect the efficiency of the process and the surface quality of the workpiece. In this paper, the cutting mechanics at nanometric scale are investigated in comparison with conventional cutting principles. Molecular Dynamics (MD) is used to model and simulate the nanometric cutting processes. The models and simulated results are evaluated and validated by the cutting trials on an atomic force microscope (AFM). Furthermore, the conceptual design of a bench-type ultraprecision machine tool is presented and the machine aims to be a facility for nanometric cutting of threedimensional MEMS devices. The paper concludes with a discussion on the potential and applications of nanometric cutting techniques/equipment for the predictabilty, producibility and productivity of manufacturing at the nanoscale

    Relative edge energy in the stability of transition metal nanoclusters of different motifs

    Get PDF
    When a structure is reduced to a nanometer scale, the proportion of the lowly-coordinated edge atoms increases significantly, which can play a crucial role in determining both their geometric and electronic properties, as demonstrated by the recently established generalized Wulff construction principle [S. F. Li, et al., Phys. Rev. Lett., 2013, 111, 115501]. Consequently, it is of great interest to clarify quantitatively the role of the edge atoms that dominate the motifs of these nanostructures. In principle, establishing an effective method valid for determining the absolute value of the surface energy and particularly the edge energy for a given nanostructure is expected to resolve such a problem. However, hitherto, it is difficult to obtain the absolute edge energy of transition metal clusters, particularly when their sizes approach the nanometer regime. In this paper, taking Ru nanoclusters as a prototypical example, our first-principles calculations introduce the concept of relative edge energy (REE), reflecting the net edge atom effect over the surface (facet) atom effect, which is fairly powerful to quasi-quantitatively estimate the critical size at which the crossover occurs between different configurations of a given motif, such as from an icosahedron to an fcc nanocrystal. By contrast, the bulk effect should be re-considered to rationalize the power of the REE in predicting the relative stability of larger nanostructures between different motifs, such as fcc-like and hcp-like nanocrystals

    Substrate co-doping modulates electronic metal-support interactions and significantly enhances single-atom catalysis

    Get PDF
    Transitional metal nanoparticles or atoms deposited on appropriate substrates can lead to highly economical, efficient, and selective catalysis. One of the greatest challenges is to control the electronic metal–support interactions (EMSI) between the supported metal atoms and the substrate so as to optimize their catalytic performance. Here, from first-principles calculations, we show that an otherwise inactive Pd single adatom on TiO2(110) can be tuned into a highly effective catalyst, e.g. for O2 adsorption and CO oxidation, by purposefully selected metal–nonmetal co-dopant pairs in the substrate. Such an effect is proved here to result unambiguously from a significantly enhanced EMSI. A nearly linear correlation is noted between the strength of the EMSI and the activation of the adsorbed O2 molecule, as well as the energy barrier for CO oxidation. Particularly, the enhanced EMSI shifts the frontier orbital of the deposited Pd atom upward and largely enhances the hybridization and charge transfer between the O2 molecule and the Pd atom. Upon co-doping, the activation barrier for CO oxidation on the Pd monomer is also reduced to a level comparable to that on the Pd dimer which was experimentally reported to be highly efficient for CO oxidation. The present findings provide new insights into the understanding of the EMSI in heterogeneous catalysis and can open new avenues to design and fabricate cost-effective single-atom-sized and/or nanometer-sized catalysts

    Allogeneic hematopoietic stem cell transplantation in China: where we are and where to go

    Get PDF
    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective and sometimes the only curative therapy for patients with certain hematological diseases. Allo-HSCT has been practiced in China for approximately 30 years, and great improvements have been made within the past decade, particularly in fields such as the haploidentical HSCT system, strategies to overcome relapse and GVHD, and modified HSCT for elderly patients. This review will describe the current situation and provide a prospective of these unique aspects of Allo-HSCT in China

    Antifatigue Effect of Millettiae speciosae Champ (Leguminosae) Extract in Mice

    Get PDF
    Purpose: To evaluate whether Millettiae Speciosae Champ. (Leguminosae) can enhance exercise performance as well as ascertain if it a potential functional food material.Methods: The extract of Millettia speciosa Champ. (MSE) was orally administered to mice in 500, 1000, 2000 mg/kg doses to investigate its anti-fatigue effect in both forced swimming and climbing tests. Glycogen, triglyceride (TG), blood urea nitrogen (BUN) and creatine phosphokinase (CK) levels in plasma which can indicate alterations in energy utilization during exercise performance, were determined to analyze the operating exercise mechanisms.Results: The results showed that swimming time to exhaustion was longer in all treated groups (41.06 ± 1.92, 47.84 ± 1.60, 54.00 ± 2.45 min for 500, 10000 and 2000 mg/kg doses, respectively) than for control (19.45 ± 0.62 min, p < 0.05). The middle and high doses of MSE-treated groups significantly prolonged the climbing time compared with control (p < 0.05). Furthermore, MSE reduced the content of TG significantly by increasing fat utilization, delayed the accumulation of BUN and decreased the level of CK (p < 0.05). In addition, administration of MSE significantly protected the depletion of muscle glycogen when compared with control (p < 0.05).Conclusion: The results show for the first time that Millettia speciosa Champ. (Leguminosae) has significant anti-fatigue activity, and also suggest that it is a potential functional food material.Keywords: Radix millettiae speciosae, Anti-fatigue activity, Exercise performance, Serum urea nitrogen, Gastrocnemius muscle glycogen, Triglyceride, Functional foo

    Desorption characteristics of H₂O and CO₂ from alumina F200 under different feed/purge pressure ratios and regeneration temperatures

    Get PDF
    Air pre-purification is an important process for industrial air separation with cryogenic distillation method. This process is typically realized by pressure swing adsorption or temperature swing adsorption. H₂O and CO₂ are the two major components to be removed among the contaminants. In this paper, we establish a mathematical model describing the mass and heat balances in the adsorption bed, and the double-component adsorption/desorption equilibriums of H₂O/CO₂ on alumina F200. To conduct desorption performance analysis, a one-cycle process consisting of feed, blowdown, and purge step under different operating conditions, such as feed/purge pressure ratio and regeneration temperature, is numerically studied. The effect of heat on the desorption performance of H₂O and CO₂ is investigated by changing the purge gas temperature within 30–200 °C under feed/purge pressure ratios of 6:1.1 and 10:1.1, respectively. Detailed results of the H₂O and CO₂ adsorption/desorption behaviors in the bed are demonstrated. The mass and heat transfer characteristics during desorption are also analyzed. Suggestions on the optimization of the heating temperature and duration of purge gas are also proposed

    Endemicity of Zoonotic Diseases in Pigs and Humans in Lowland and Upland Lao PDR: Identification of Socio-cultural Risk Factors

    Get PDF
    In Lao People's Democratic Republic pigs are kept in close contact with families. Human risk of infection with pig zoonoses arises from direct contact and consumption of unsafe pig products. This cross-sectional study was conducted in Luang Prabang (north) and Savannakhet (central-south) Provinces. A total of 59 villages, 895 humans and 647 pigs were sampled and serologically tested for zoonotic pathogens including: hepatitis E virus (HEV), Japanese encephalitis virus (JEV) and Trichinella spiralis; In addition, human sera were tested for Taenia spp. and cysticercosis. Seroprevalence of zoonotic pathogens in humans was high for HEV (Luang Prabang: 48.6%, Savannakhet: 77.7%) and T. spiralis (Luang Prabang: 59.0%, Savannakhet: 40.5%), and lower for JEV (around 5%), Taenia spp. (around 3%) and cysticercosis (Luang Prabang: 6.1, Savannakhet 1.5%). Multiple correspondence analysis and hierarchical clustering of principal components was performed on descriptive data of human hygiene practices, contact with pigs and consumption of pork products. Three clusters were identified: Cluster 1 had low pig contact and good hygiene practices, but had higher risk of T. spiralis. Most people in cluster 2 were involved in pig slaughter (83.7%), handled raw meat or offal (99.4%) and consumed raw pigs' blood (76.4%). Compared to cluster 1, cluster 2 had increased odds of testing seropositive for HEV and JEV. Cluster 3 had the lowest sanitation access and had the highest risk of HEV, cysticercosis and Taenia spp. Farmers which kept their pigs tethered (as opposed to penned) and disposed of manure in water sources had 0.85 (95% CI: 0.18 to 0.91) and 2.39 (95% CI: 1.07 to 5.34) times the odds of having pigs test seropositive for HEV, respectively. The results have been used to identify entry-points for intervention and management strategies to reduce disease exposure in humans and pigs, informing control activities in a cysticercosis hyper-endemic village

    An oxidized magnetic Au single atom on doped TiO2(110) becomes a high performance CO oxidation catalyst due to the charge effect

    Get PDF
    Catalysis using gold nanoparticles supported on oxides has been under extensive investigation for many important application processes. However, how to tune the charge state of a given Au species to perform a specific chemical reaction, e.g. CO oxidation, remains elusive. Here, using first-principles calculations, we show clearly that an intrinsically inert Au anion deposited on oxygen-deficient TiO2(110) (Au@TiO2(110)) can be tuned and optimized into a highly effective single atom catalyst (SAC), due to the depletion of the d-orbital by substrate doping. Particularly, Ni- and Cu-doped Au@TiO2 complexes undergo a reconstruction driven by one of the two dissociated O atoms upon CO oxidation. The remaining O atom heals the surface oxygen vacancy and results in a stable bow-shaped surface “O–Au–O” species; thereby the highly oxidized Au single atom now exhibits magnetism and dramatically enhanced activity and stability for O2 activation and CO oxidation, due to the emergence of high density of states near the Fermi level. Based on further extensive calculations, we establish the “charge selection rule” for O2 activation and CO oxidation on Au: the positively charged Au SAC is more active than its negatively charged counterpart for O2 activation, and the more positively charged the Au, the more active it is

    Long-standing Small-scale Reconnection Processes at Saturn Revealed by Cassini

    Get PDF
    The internal mass source from the icy moon Enceladus in Saturn’s rapidly rotating magnetosphere drives electromagnetic dynamics in multiple spatial and temporal scales. The distribution and circulation of the internal plasma and associated energy are thus crucial in understanding Saturn’s magnetospheric environment. Magnetic reconnection is one of the key processes in driving plasma and energy transport in the magnetosphere, and also a fundamental plasma process in energizing charged particles. Recent works suggested that reconnection driven by Saturn’s rapid rotation might appear as a chain of microscale structures, named drizzle-like reconnection. The drizzle-like reconnection could exist not only in the nightside magnetodisk, but also in the dayside magnetodisk. Here, using in situ measurements from the Cassini spacecraft, we report multiple reconnection sites that were successively detected during a time interval longer than one rotation period. The time separation between two adjacently detected reconnection sites can be much less than one rotation period, implying that the reconnection processes are likely small-scale, or frequently repetitive. The spatial distribution of the identified long-standing multiple small reconnection site sequences shows no significant preference on local times. We propose that the small reconnection sites discussed in this Letter are rotationally driven and rotate with the magnetosphere. Since the reconnection process on Saturn can be long-durational, the rotational regime can cause these smallscale reconnection sites to spread to all local times, resulting in global release of energy and mass from the magnetosphere
    corecore