130 research outputs found

    Angular correlation between photoelectrons and Auger electrons within scattering theory

    No full text
    International audienceIn this paper we present a single-particle scattering approach for the angular correlation between a photoelectron and the subsequent Auger electron from atomic targets. This method is proposed as an alternative approach with respect to the usual density matrix formalism, since it is more convenient for extension to the solid state case. Such an extension is required by the great progress made in the field of coincidence spectroscopy in condensed matter systems. We derived a tensor expression for the cross section and an equivalent expression in terms of convenient angular functions has been treated for the case of linearly polarized light. Numerical calculations are performed for the L3M2,3M2,3 transition in argon, in the single configuration Dirac-Fock scheme. Results are compared with experimental data for different final angular momentum states of the doubly charged ion and for different kinematical conditions

    SEI Growth and Depth Profiling on ZFO Electrodes by Soft X-Ray Absorption Spectroscopy

    Get PDF
    The evolution of the solid electrolyte interface (SEI) in carbon‐coated ZnFe2O4 (ZFO‐C) anodes is studied by soft X‐ray absorption spectroscopy (XAS). Experiments probe locally the SEI growth in the 2–100 nm range, using both total electron (TEY) and total fluorescence (TFY) yield techniques. XAS analysis shows that the SEI grows preferentially around the ZFO‐C nanoparticles

    Band Gap Implications on Nano-TiO2 Surface Modification with Ascorbic Acid for Visible Light-Active Polypropylene Coated Photocatalyst

    Get PDF
    The effect of surface modification using ascorbic acid as a surface modifier of nano-TiO2 heterogeneous photocatalyst was studied. The preparation of supported photocatalyst was made by a specific paste containing ascorbic acid modified TiO2 nanoparticles used to cover Polypropylene as a support material. The obtained heterogeneous photocatalyst was thoroughly characterized (scanning electron microscope (SEM), RAMAN, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and Diffuse Reflectance Spectra (DRS) and successfully applied in the visible light photodegradation of Alizarin Red S in water solutions. In particular, this new supported TiO2 photocatalyst showed a change in the adsorption mechanism of dye with respect to that of only TiO2 due to the surface properties. In addition, an improvement of photocatalytic performances in the visible light photodegration was obtained, showing a strict correlation between efficiency and energy band gap values, evidencing the favorable surface modification of TiO2 nanoparticles
    corecore