11,108 research outputs found
An unified cosmological evolution driven by a mass dimension one fermionic field
An unified cosmological model for an Universe filled with a mass dimension
one (MDO) fermionic field plus the standard matter fields is considered. After
a primordial quantum fluctuation the field slowly rolls down to the bottom of a
symmetry breaking potential, driving the Universe to an inflationary regime
that increases the scale factor for about 71 e-folds. After the end of
inflation, the field starts to oscillate and can transfer its energy to the
standard model particles through a reheating mechanism. Such a process is
briefly discussed in terms of the admissible couplings of the MDO field with
the electromagnetic and Higgs fields. We show that even if the field loses all
its kinetic energy during reheating, it can evolve as dark matter due a
gravitational coupling (of spinorial origin) with baryonic matter. Since the
field acquires a constant value at the bottom of the potential, a non-null,
although tiny, mass term acts as a dark energy component nowadays. Therefore,
we conclude that MDO fermionic field is a good candidate to drive the whole
evolution of the Universe, in such a way that the inflationary field, dark
matter and dark energy are described by different manifestations of a single
field.Comment: 22 pages, 5 figure
Steady-state entanglement between distant quantum dots in photonic crystal dimers
We show that two spatially separated semiconductor quantum dots under
resonant and continuous-wave excitation can be strongly entangled in the
steady-state, thanks to their radiative coupling by mutual interaction through
the normal modes of a photonic crystal dimer. We employ a quantum master
equation formalism to quantify the steady-state entanglement by calculating the
system {\it negativity}. Calculations are specified to consider realistic
semiconductor nanostructure parameters for the photonic crystal dimer-quantum
dots coupled system, determined by a guided mode expansion solution of Maxwell
equations. Negativity values of the order of 0.1 ( of the maximum value)
are shown for interdot distances that are larger than the resonant wavelength
of the system. It is shown that the amount of entanglement is almost
independent of the interdot distance, as long as the normal mode splitting of
the photonic dimer is larger than their linewidths, which becomes the only
requirement to achieve a local and individual qubit addressing. Considering
inhomogeneously broadened quantum dots, we find that the steady-state
entanglement is preserved as long as the detuning between the two quantum dot
resonances is small when compared to their decay rates. The steady-state
entanglement is shown to be robust against the effects of pure dephasing of the
quantum dot transitions. We finally study the entanglement dynamics for a
configuration in which one of the two quantum dots is initially excited and
find that the transient negativity can be enhanced by more than a factor of two
with respect to the steady-state value. These results are promising for
practical applications of entangled states at short time scales.Comment: 10 pages, 7 figure
On the dimensional dependence of duality groups for massive p-forms
We study the soldering formalism in the context of abelian p-form theories.
We develop further the fusion process of massless antisymmetric tensors of
different ranks into a massive p-form and establish its duality properties. To
illustrate the formalism we consider two situations. First the soldering mass
generation mechanism is compared with the Higgs and Julia-Toulouse mechanisms
for mass generation due to condensation of electric and magnetic topological
defects. We show that the soldering mechanism interpolates between them for
even dimensional spacetimes, in this way confirming the Higgs/Julia-Toulouse
duality proposed by Quevedo and Trugenberger \cite{QT} a few years ago. Next,
soldering is applied to the study of duality group classification of the
massive forms. We show a dichotomy controlled by the parity of the operator
defining the symplectic structure of the theory and find their explicit
actions.Comment: Reference [8] has been properly place
Graphene-based spin-pumping transistor
We demonstrate with a fully quantum-mechanical approach that graphene can
function as gate-controllable transistors for pumped spin currents, i.e., a
stream of angular momentum induced by the precession of adjacent
magnetizations, which exists in the absence of net charge currents.
Furthermore, we propose as a proof of concept how these spin currents can be
modulated by an electrostatic gate. Because our proposal involves nano-sized
systems that function with very high speeds and in the absence of any applied
bias, it is potentially useful for the development of transistors capable of
combining large processing speeds, enhanced integration and extremely low power
consumption
Graphene as a non-magnetic spin-current lens
In spintronics, the ability to transport magnetic information often depends
on the existence of a spin current traveling between two different magnetic
objects acting as source and probe. A large fraction of this information never
reaches the probe and is lost because the spin current tends to travel
omni-directionally. We propose that a curved boundary between a gated and a
non-gated region within graphene acts as an ideal lens for spin currents
despite being entirely of non-magnetic nature. We show as a proof of concept
that such lenses can be utilized to redirect the spin current that travels away
from a source onto a focus region where a magnetic probe is located, saving a
considerable fraction of the magnetic information that would be otherwise lost.Comment: 9 pages, 3 figure
Zero-point quantum swing of magnetic couples
Quantum fluctuations are ubiquitous in physics. Ranging from conventional
examples like the harmonic oscillator to intricate theories on the origin of
the universe, they alter virtually all aspects of matter -- including
superconductivity, phase transitions and nanoscale processes. As a rule of
thumb, the smaller the object, the larger their impact. This poses a serious
challenge to modern nanotechnology, which aims total control via atom-by-atom
engineered devices. In magnetic nanostructures, high stability of the magnetic
signal is crucial when targeting realistic applications in information
technology, e.g. miniaturized bits. Here, we demonstrate that zero-point
spin-fluctuations are paramount in determining the fundamental magnetic
exchange interactions that dictate the nature and stability of the magnetic
state. Hinging on the fluctuation-dissipation theorem, we establish that
quantum fluctuations correctly account for the large overestimation of the
interactions as obtained from conventional static first-principles frameworks,
filling in a crucial gap between theory and experiment [1,2]. Our analysis
further reveals that zero-point spin-fluctuations tend to promote the
non-collinearity and stability of chiral magnetic textures such as skyrmions --
a counter-intuitive quantum effect that inspires practical guidelines for
designing disruptive nanodevices
- …