6,324 research outputs found

    Dynamics of a class A nonlinear mirror mode-locked laser

    Full text link
    Using a delay differential equation model we study theoretically the dynamics of a unidirectional class-A ring laser with a nonlinear amplifying loop mirror. We perform linear stability analysis of the CW regimes in the large delay limit and demonstrate that these regimes can be destabilized via modulational and Turing-type instabilities, as well as by an instability leading to the appearance of square-waves. We investigate the formation of square-waves and mode-locked pulses in the system. We show that mode-locked pulses are asymmetric with exponential decay of the trailing edge in positive time and faster-than-exponential (super-exponential) decay of the leading edge in negative time. We discuss asymmetric interaction of these pulses leading to a formation of harmonic mode-locked regimes.Comment: 9 pages

    Probing the braneworld hypothesis with a neutron-shining-through-a-wall experiment

    Get PDF
    The possibility for our visible world to be a 3-brane embedded in a multidimensional bulk is at the heart of many theoretical edifices in high-energy physics. Probing the braneworld hypothesis is thus a major experimental challenge. Following recent theoretical works showing that matter swapping between braneworlds can occur, we propose a neutron-shining-through-a-wall experiment. We first show that an intense neutron source such as a nuclear reactor core can induce a hidden neutron flux in an adjacent hidden braneworld. We then describe how a low-background detector can detect neutrons arising from the hidden world and quantify the expected sensitivity to the swapping probability. As a proof of concept, a constraint is derived from previous experiments.Comment: 12 pages, 4 figures, final version published in Physical Review

    3D printing of gas jet nozzles for laser-plasma accelerators

    Full text link
    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular it was reported that appropriate density tailoring can result in improved injection, acceleration and collimation of laser-accelerated electron beams. To achieve such profiles innovative target designs are required. For this purpose we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling (FDM) to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliqu\'ee

    Energy boost in laser wakefield accelerators using sharp density transitions

    Full text link
    The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime it is much more difficult to achieve phase locking. As an alternative we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations and we present gain estimations for single and multiple stages of rephasing

    Non-additivity of Renyi entropy and Dvoretzky's Theorem

    Full text link
    The goal of this note is to show that the analysis of the minimum output p-Renyi entropy of a typical quantum channel essentially amounts to applying Milman's version of Dvoretzky's Theorem about almost Euclidean sections of high-dimensional convex bodies. This conceptually simplifies the (nonconstructive) argument by Hayden-Winter disproving the additivity conjecture for the minimal output p-Renyi entropy (for p>1).Comment: 8 pages, LaTeX; v2: added and updated references, minor editorial changes, no content change

    Demonstrating the model nature of the high-temperature superconductor HgBa2_2CuO4+Δ_{4+\Delta}

    Full text link
    The compound HgBa2_2CuO4+Δ_{4+\Delta} (Hg1201) exhibits a simple tetragonal crystal structure and the highest superconducting transition temperature (Tc_c) among all single Cu-O layer cuprates, with Tc_c = 97 K (onset) at optimal doping. Due to a lack of sizable single crystals, experimental work on this very attractive system has been significantly limited. Thanks to a recent breakthrough in crystal growth, such crystals have now become available. Here, we demonstrate that it is possible to identify suitable heat treatment conditions to systematically and uniformly tune the hole concentration of Hg1201 crystals over a wide range, from very underdoped (Tc_c = 47 K, hole concentration p ~ 0.08) to overdoped (Tc_c = 64 K, p ~ 0.22). We then present quantitative magnetic susceptibility and DC charge transport results that reveal the very high-quality nature of the studied crystals. Using XPS on cleaved samples, we furthermore demonstrate that it is possible to obtain large surfaces of good quality. These characterization measurements demonstrate that Hg1201 should be viewed as a model high-temperature superconductor, and they provide the foundation for extensive future experimental work.Comment: 15 pages, 6 Figure

    On the structure of the post-Newtonian expansion in general relativity

    Full text link
    In the continuation of a preceding work, we derive a new expression for the metric in the near zone of an isolated matter system in post-Newtonian approximations of general relativity. The post-Newtonian metric, a solution of the field equations in harmonic coordinates, is formally valid up to any order, and is cast in the form of a particular solution of the wave equation, plus a specific homogeneous solution which ensures the asymptotic matching to the multipolar expansion of the gravitational field in the exterior of the system. The new form provides some insights on the structure of the post-Newtonian expansion in general relativity and the gravitational radiation reaction terms therein.Comment: 22 pages, to appear in Phys. Rev.

    Electromagnetic analysis of arbitrarily shaped pinched carpets

    Full text link
    We derive the expressions for the anisotropic heterogeneous tensors of permittivity and perme- ability associated with two-dimensional and three-dimensional carpets of an arbitrary shape. In the former case, we map a segment onto smooth curves whereas in the latter case we map a non convex region of the plane onto smooth surfaces. Importantly, these carpets display no singularity of the permeability and permeability tensor components, and this may lead to some broadband cloaking.Comment: 6 pages, 6 figures, Current Status of Manuscript: 19Apr10 26May10-Sent on appeal;report rcvd 29Dec09 13Apr10-Ed. decision and/or ref. comments to author;response rcvd 04Dec09 21Dec09-Ed. decision and/or ref. comments to author;response rcvd 01Dec09-Transferred from PRL to PRA 18Aug09 30Nov09-Ed.decision and/or ref. comments to author;response rcvd 14Aug09 - Correspondence sent to autho
    • …
    corecore