18 research outputs found

    Cystatin E/M suppresses legumain activity and invasion of human melanoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High activity of cysteine proteases such as legumain and the cathepsins have been shown to facilitate growth and invasion of a variety of tumor types. In breast cancer, several recent studies have indicated that loss of the cysteine protease inhibitor cystatin E/M leads to increased growth and metastasis. Although cystatin E/M is normally expressed in the skin, its role in cysteine protease regulation and progression of malignant melanoma has not been studied.</p> <p>Methods</p> <p>A panel of various non-melanoma and melanoma cell lines was used. Cystatin E/M and C were analyzed in cell media by immunoblotting and ELISA. Legumain, cathepsin B and L were analyzed in cell lysates by immunoblotting and their enzymatic activities were analyzed by peptide substrates. Two melanoma cell lines lacking detectable secretion of cystatin E/M were transfected with a cystatin E/M expression plasmid (pCST6), and migration and invasiveness were studied by a Matrigel invasion assay.</p> <p>Results</p> <p>Cystatin E/M was undetectable in media from all established melanoma cell lines examined, whereas strong immunobands were detected in two of five primary melanoma lines and in two of six lines derived from patients with metastatic disease. Among the four melanoma lines secreting cystatin E/M, the glycosylated form (17 kD) was predominant compared to the non-glycosylated form (14 kD). Legumain, cathepsin B and L were expressed and active in most of the cell lines, although at low levels in the melanomas expressing cystatin E/M. In the melanoma lines where cystatin E/M was secreted, cystatin C was generally absent or expressed at a very low level. When melanoma cells lacking secretion of cystatin E/M were transfected with pCST6, their intracellular legumain activity was significantly inhibited. In contrast, cathepsin B activity was not affected. Furthermore, invasion was suppressed in cystatin E/M over-expressing melanoma cell lines as measured by the transwell Matrigel assay.</p> <p>Conclusions</p> <p>These results suggest that the level of cystatin E/M regulates legumain activity and hence the invasive potential of human melanoma cells.</p

    LITHIUM INTERCALATION IN MOO3 - A COMPARISON BETWEEN CRYSTALLINE AND DISORDERED PHASES

    No full text
    We report properties of lithium-intercalated MoO3 crystalline and thin-film which are potential cathode materials for high energy density batteries. Discharge and charge reactions of MoO3 electrodes in a non-aqueous Li+-electrolyte have been studied. The kinetically accessible discharge range amounts to 0 less-than-or-equal-to x less-than-or-equal-to 1.5 for Li insertion in LixMoO3. Transport parameters such as the Li+ chemical diffusion coefficient, thermodynamic factor and ionic conductivity are investigated during the Li+ insertion process and discussed with respect to the crystallinity of the cathode material.59217317

    THE GROWTH OF V2O5 FLASH-EVAPORATED FILMS

    No full text
    141393493

    THE GROWTH AND ELECTROCHEMICAL PROPERTIES OF V6O13 FLASH-EVAPORATED FILMS

    No full text
    The growth of V6O13 films is reported for the first time. We have investigated the structural, optical, and electrical properties of flash-evaporated polycrystalline films and how these properties are affected by different thin-film preparation conditions. The highest quality films were grown on silicon substrate maintained at 250 degrees C. Microbatteries fabricated with cathode formed at moderate temperature exhibit a monotonous discharge voltage curve, indicating that the material remains in a single phase even for high degree of lithium intercalation. For cathode films prepared at 250 degrees C, lithium diffusivity is 10(-13) cm(2) s(-1) in LixV6O13.764167113314

    Comparison of the suppressive effects of soluble CR1 and C5a receptor antagonist in acute arthritis induced in rats by blocking of CD59

    No full text
    We investigated the effects of suppression of complement activation at C3 level and inhibition of C5a on acute synovitis in rats. Acute synovitis was induced in Wistar rats by intra-articular (i.a.) injection into one knee of 0.3 mg of MoAb 6D1 (anti-rat CD59 antibody). In the treatment groups, soluble CR1 (sCR1) or C5a receptor (C5aR) antagonist was administered intra-articularly or intravenously and effects on the course of the acute synovitis were monitored. Synovitis induced by 6D1 was characterized by joint swelling, thickening of synovial tissue, cellular infiltration and deposition of membrane attack complex (MAC) on the synovial surface. Neither inflammatory change nor MAC deposition was found in rats which received an i.a. injection of sCR1 to suppress complement activity in the joint. Intra-articular injection of sCR1 did not reduce plasma complement activity. Intravenous administration of sCR1 suppressed plasma complement activity but had no effect on the course of the arthritis and synovitis with MAC deposition was observed. Neither i.a. nor i.v. injection of C5aR antagonist had any suppressive effects on inflammatory change or MAC deposition in synovium. The data show that inflammatory change induced by 6D1 was mediated by local complement activation and was not accompanied by systemic complement activation. C5a generation was not responsible for the observed inflammation, suggesting that other complement activation products, possibly MAC, mediate the inflammatory change observed in this model of acute synovitis in rats

    Cryo-scanning transmission electron tomography of vitrified cells

    No full text
    Cryo-electron tomography (CET) of fully hydrated, vitrified biological specimens has emerged as a vital tool for biological research. For cellular studies, the conventional imaging modality of transmission electron microscopy places stringent constraints on sample thickness because of its dependence on phase coherence for contrast generation. Here we demonstrate the feasibility of using scanning transmission electron microscopy for cryo-tomography of unstained vitrified specimens (CSTET). We compare CSTET and CET for the imaging of whole bacteria and human tissue culture cells, finding favorable contrast and detail in the CSTET reconstructions. Particularly at high sample tilts, the CSTET signals contain more informative data than energy-filtered CET phase contrast images, resulting in improved depth resolution. Careful control over dose delivery permits relatively high cumulative exposures before the onset of observable beam damage. The increase in acceptable specimen thickness broadens the applicability of electron cryo-tomography
    corecore