8 research outputs found

    SENSING IMMOBILIZED MOLECULES OF STREPTAVIDIN ON A SILICON SURFACE BY MALDI-TOF MASS SPECTROMETRY AND FLUORESCENCE MICROSCOPY

    Get PDF
    Indexación: Web of Science; Scielo.A hydrogen-terminated Si (111) surface was modified to form an aminoterminated monolayer for immobilization of streptavidin. Cleavage of an N-(ω-undecylenyl)-phthalimide covered surface using hidrazine yields an amino group-modified surface, which serves as a substrate for the attachment of biotin and subsequently streptavidin. We used surface analytical techniques to characterize the surface and to control the course of functionalization before the immobilization of streptavidin. To confirm the presence of the streptavidin Texas red on the surface two powerful techniques available in a standard biochemical laboratory are used, Fluorescence Microscopy and MALDI-TOF that allow us to detect and determine the immobilized streptavidin. This work provides an avenue for the development of devices in which the exquisite binding specificity of biomolecular recognition is directly coupled to a biosensor. In addition, we have demonstrated that MALDI-TOF and fluorescence microscopy are useful techniques for the characterization of silicon functionalized surfaces.http://ref.scielo.org/gm87c

    Versatile polymer-free graphene transfer method and applications

    Get PDF
    A new method for transferring chemical vapor deposition (CVD)-grown monolayer graphene to a variety of substrates is described. The method makes use of an organic/aqueous biphasic configuration, avoiding the use of any polymeric materials that can cause severe contamination problems. The graphene-coated copper foil sample (on which graphene was grown) sits at the interface between hexane and an aqueous etching solution of ammonium persulfate to remove the copper. With the aid of an Si/SiO2 substrate, the graphene layer is then transferred to a second hexane/water interface to remove etching products. From this new location, CVD graphene is readily transferred to arbitrary substrates, including three-dimensional architectures as represented by atomic force microscopy (AFM) tips and transmission electron microscopy (TEM) grids. Graphene produces a conformal layer on AFM tips, to the very end, allowing easy production of tips for conductive AFM imaging. Graphene transferred to copper TEM grids provides large-area, highly electron-transparent substrates for TEM imaging. These substrates can also be used as working electrodes for electrochemistry and high-resolution wetting studies. By using scanning electrochemical cell microscopy, it is possible to make electrochemical and wetting measurements at either a freestanding graphene film or a copper-supported graphene area and readily determine any differences in behavior

    Electrochemistry at highly oriented pyrolytic graphite (HOPG) : toward a new perspective

    No full text
    This chapter is concerned with electrochemistry at, and of, highly oriented pyrolytic graphite (HOPG), a material that has been studied intermittently for several decades, but which is of enduring interest particularly as a comparison to other types of carbon electrodes. It presents an overview of the field, with a particular focus on recent work that allows key models of the HOPG electrochemistry to be assessed. Recent developments in scanning probe microscopy have provided new opportunities to determine the electrical and electrochemical characteristics of graphite with unprecedented detail and spatial resolution. These developments receive major attention in the chapter. An overview of the structure and electronic properties of graphite is provided. The chapter also assesses early electrochemical measurements at HOPG, which tended to rely on macroscopic measurements and correlations between different macroscopic quantities. It highlights that the new understanding of HOPG electrodes has implications for wider electrochemistry

    Trace voltammetric detection of serotonin at carbon electrodes : comparison of glassy carbon, boron doped diamond and carbon nanotube network electrodes

    No full text
    The characteristics of three different carbon electrodes, glassy carbon (GC), oxygen-terminated polycrystalline boron-doped diamond (pBDD) and "pristine" carbon nanotube networks (CNTN) as voltammetric sensors for detection of the neurotransmitter serotonin have been investigated. For each electrode, detection sensitivity was determined using cyclic voltammetry (CV), a technique often used to provide information on chemical identity in electrochemical assays. The CNTN electrodes were found to exhibit background current densities ca. two orders of magnitude smaller than the GC electrode and ca. twenty times smaller than pBDD, as a consequence of their "pristine" low capacitance and low surface coverage. This was a major factor in determining serotonin detection limits from CV, of 10 nM for the CNTN electrode, 500 nM for pBDD and 2 mu M for GC. The two most sensitive electrodes (CNTN and pBDD) were further investigated in terms of resistance to electrode fouling. CV analysis showed that fouling was less on the pBDD electrode compared to the CNTN and, furthemore, for the case of pBDD could be significantly minimised by careful selection of the CV potential limits, in particular by scanning the electrode potential to suitably cathodic values after oxidation of the serotonin

    Spatial and temporal control of the diazonium modification of sp2 carbon surfaces

    No full text
    Interest in the controlled chemical functionalization of sp2 carbon materials using diazonium compounds has been recently reignited, particularly as a means to generate a band gap in graphene. We demonstrate local diazonium modification of pristine sp2 carbon surfaces, with high control, at the micrometer scale through the use of scanning electrochemical cell microscopy (SECCM). Electrochemically driven diazonium patterning is investigated at a range of driving forces, coupled with surface analysis using atomic force microscopy (AFM) and Raman spectroscopy. We highlight how the film density, level of sp2/sp3 rehybridization and the extent of multilayer formation can be controlled, paving the way for the use of localized electrochemistry as a route to controlled diazonium modification

    Boron doped diamond ultramicroelectrodes : a generic platform for sensing single nanoparticle electrocatalytic collisions

    No full text
    Boron doped diamond (BDD) disk ultramicroelectrodes have been used to sense single nanoparticle (NP) electrocatalytic collision events. BDD serves as an excellent support electrode due to its electrocatalytic inactivity and low background currents and thus can be used to detect the electroactivity of a wide range of colliding NPs, with high sensitivity. In particular, single NP collisions for hydrazine oxidation at Au and Pt NPs were shown to be markedly different

    Mapping nanoscale electrochemistry of individual single-walled carbon nanotubes

    No full text
    We introduce a multiprobe platform for the investigation of single-walled carbon nanotubes (SWNTs) that allows the electrochemical response of an individual SWNT to be mapped at high spatial resolution and correlated directly with the intrinsic electronic and structural properties. With this approach, we develop a detailed picture of the factors controlling electrochemistry at SWNTs and propose a definitive model that has major implications for future architectures of SWNT electrode devices
    corecore