752 research outputs found

    Depression rating scales in Parkinson's disease: critique and recommendations.

    Get PDF
    Depression is a common comorbid condition in Parkinson’s disease (PD) and a major contributor to poor quality of life and disability. However, depression can be difficult to assess in patients with PD due to overlapping symptoms and difficulties in the assessment of depression in cognitively impaired patients. As several rating scales have been used to assess depression in PD (dPD), the Movement Disorder Society commissioned a task force to assess their clinimetric properties and make clinical recommendations regarding their use. A systematic literature review was conducted to explore the use of depression scales in PD and determine which scales should be selected for this review. The scales reviewed were the Beck Depression Inventory (BDI), Hamilton Depression Scale (Ham-D), Hospital Anxiety and Depression Scale (HADS), Zung Self-Rating Depression Scale (SDS), Geriatric Depression Scale (GDS), Montgomery-As-berg Depression Rating Scale (MADRS), Unified Parkinson’s Disease Rating Scale (UPDRS) Part I, Cornell Scale for the Assessment of Depression in Dementia (CSDD), and the Center for Epidemiologic Studies Depression Scale (CES-D). Seven clinical researchers with clinical and research experience in the assessment of dPD were assigned to review the scales using a structured format. The most appropriate scale is dependent on the clinical or research goal. However, observer-rated scales are preferred if the study or clinical situation permits. For screening purposes, the HAM-D, BDI, HADS, MADRS, and GDS are valid in dPD. The CES-D and CSDD are alternative instruments that need validation in dPD. For measurement of severity of depressive symptoms, the Ham-D, MADRS, BDI, and SDS scales are recommended. Further studies are needed to validate the CSDD, which could be particularly useful for the assessment of severity of dPD in patients with comorbid dementia. To account for overlapping motor and nonmotor symptoms of depression, adjusted instrument cutoff scores may be needed for dPD, and scales to assess severity of motor symptoms (e.g., UPDRS) should also be included to help adjust for confounding factors. The HADS and the GDS include limited motor symptom assessment and may, therefore, be most useful in rating depression severity across a range of PD severity; however, these scales appear insensitive in severe depression. The complex and time-consuming task of developing a new scale to measure depression specifically for patients with PD is currently not warranted

    Dynamics of dental evolution in ornithopod dinosaurs.

    Get PDF
    Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the 'duck-billed' hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution

    Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV Core DII protein

    Get PDF
    Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV

    First Neutrino Observations from the Sudbury Neutrino Observatory

    Get PDF
    The first neutrino observations from the Sudbury Neutrino Observatory are presented from preliminary analyses. Based on energy, direction and location, the data in the region of interest appear to be dominated by 8B solar neutrinos, detected by the charged current reaction on deuterium and elastic scattering from electrons, with very little background. Measurements of radioactive backgrounds indicate that the measurement of all active neutrino types via the neutral current reaction on deuterium will be possible with small systematic uncertainties. Quantitative results for the fluxes observed with these reactions will be provided when further calibrations have been completed.Comment: Latex, 7 pages, 10 figures, Invited paper at Neutrino 2000 Conference, Sudbury, Canada, June 16-21, 2000 to be published in the Proceeding

    High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland

    Get PDF
    Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role

    Cross-Linking Amine-Rich Compounds into High Performing Selective CO2 Absorbents

    Get PDF
    Amine-based absorbents play a central role in CO2 sequestration and utilization. Amines react selectively with CO2, but a drawback is the unproductive weight of solvent or support in the absorbent. Efforts have focused on metal organic frameworks (MOFs) reaching extremely high CO2 capacity, but limited selectivity to N2 and CH4, and decreased uptake at higher temperatures. A desirable system would have selectivity (cf. amine) and high capacity (cf. MOF), but also increased adsorption at higher temperatures. Here, we demonstrate a proof-of-concept where polyethyleneimine (PEI) is converted to a high capacity and highly selective CO2 absorbent using buckminsterfullerene (C60) as a cross-linker. PEI-C60 (CO2 absorption of 0.14 g/g at 0.1 bar/90°C) is compared to one of the best MOFs, Mg-MOF-74 (0.06 g/g at 0.1 bar/90°C), and does not absorb any measurable amount of CH4 at 50 bar. Thus, PEI-C60 can perform better than MOFs in the sweetening of natural gas

    Crystal-Size Effects on Carbon Dioxide Capture of a Covalently Alkylamine-Tethered Metal-Organic Framework Constructed by a One-Step Self-Assembly

    Get PDF
    To enhance the carbon dioxide (CO2) uptake of metal-organic frameworks (MOFs), amine functionalization of their pore surfaces has been studied extensively. In general, amine-functionalized MOFs have been synthesized via post-synthetic modifications. Herein, we introduce a one-step construction of a MOF ([(NiLethylamine)(BPDC)]=MOFNH2; [NiLethylamine]2+=[Ni(C12H32N8)]2+; BPDC2-=4,4???-biphenyldicarboxylate) possessing covalently tethered alkylamine groups without post-synthetic modification. Two-amine groups per metal centre were introduced by this method. MOFNH2 showed enhanced CO2 uptake at elevated temperatures, attributed to active chemical interactions between the amine groups and the CO2 molecules. Due to the narrow channels of MOFNH2, the accessibility to the channel of CO2 is the limiting factor in its sorption behaviour. In this context, only crystal size reduction of MOFNH2 led to much faster and greater CO2 uptake at low pressures.open

    Fast Benchtop Fabrication of Laminar Flow Chambers for Advanced Microscopy Techniques

    Get PDF
    Background: Fluid handling technology is acquiring an ever more prominent place in laboratory science whether it is in simple buffer exchange systems, perfusion chambers, or advanced microfluidic devices. Many of these applications remain the providence of laboratories at large institutions with a great deal of expertise and specialized equipment. Even with the expansion of these techniques, limitations remain that frequently prevent the coupling of controlled fluid flow with other technologies, such as coupling microfluidics and high-resolution position and force measurements by optical trapping microscopy. Method: Here we present a method for fabrication of multiple-input laminar flow devices that are optically clear [glass] on each face, chemically inert, reusable, inexpensive, and can be fabricated on the benchtop in approximately one hour. Further these devices are designed to allow flow regulation by a simple gravity method thus requiring no specialized equipment to drive flow. Here we use these devices to perform total internal reflection fluorescence microscopy measurements as well as position sensitive optical trapping experiments. Significance: Flow chamber technology needs to be more accessible to the general scientific community. The method presented here is versatile and robust. These devices use standard slides and coverslips making them compatible with nearly all types and models of light microscopes. These devices meet the needs of groups doing advanced optical trapping experiments, but could also be adapted by nearly any lab that has a function for solution flow coupled with microscopy
    corecore