34 research outputs found

    Positive Regulation of DNA Double Strand Break Repair Activity during Differentiation of Long Life Span Cells: The Example of Adipogenesis

    Get PDF
    Little information is available on the ability of terminally differentiated cells to efficiently repair DNA double strand breaks (DSBs), and one might reasonably speculate that efficient DNA repair of these threatening DNA lesions, is needed in cells of long life span with no or limited regeneration from precursor. Few tissues are available besides neurons that allow the study of DNA DSBs repair activity in very long-lived cells. Adipocytes represent a suitable model since it is generally admitted that there is a very slow turnover of adipocytes in adult. Using both Pulse Field Gel Electrophoresis (PFGE) and the disappearance of the phosphorylated form of the histone variant H2AX, we demonstrated that the ability to repair DSBs is increased during adipocyte differentiation using the murine pre-adipocyte cell line, 3T3F442A. In mammalian cells, DSBs are mainly repaired by the non-homologous end-joining pathway (NHEJ) that relies on the DNA dependent protein kinase (DNA-PK) activity. During the first 24 h following the commitment into adipogenesis, we show an increase in the expression and activity of the catalytic sub-unit of the DNA-PK complex, DNA-PKcs. The increased in DNA DSBs repair activity observed in adipocytes was due to the increase in DNA-PK activity as shown by the use of DNA-PK inhibitor or sub-clones of 3T3F442A deficient in DNA-PKcs using long term RNA interference. Interestingly, the up-regulation of DNA-PK does not regulate the differentiation program itself. Finally, similar positive regulation of DNA-PKcs expression and activity was observed during differentiation of primary culture of pre-adipocytes isolated from human sub-cutaneous adipose tissue

    Radiation induced CNS toxicity – molecular and cellular mechanisms

    Get PDF
    Radiotherapy of tumours proximal to normal CNS structures is limited by the sensitivity of the normal tissue. Prior to the development of prophylactic strategies or treatment protocols a detailed understanding of the mechanisms of radiation induced CNS toxicity is mandatory. Histological analysis of irradiated CNS specimens defines possible target structures prior to a delineation of cellular and molecular mechanisms. Several lesions can be distinguished: Demyelination, proliferative and degenerative glial reactions, endothelial cell loss and capillary occlusion. All changes are likely to result from complex alterations within several functional CNS compartments. Thus, a single mechanism responsible cannot be separated. At least four factors contribute to the development of CNS toxicity: (1) damage to vessel structures; (2) deletion of oligodendrocyte-2 astrocyte progenitors (O-2A) and mature oligodendrocytes; (3) deletion of neural stem cell populations in the hippocampus, cerebellum and cortex; (4) generalized alterations of cytokine expression. Several underlying cellular and molecular mechanisms involved in radiation induced CNS toxicity have been identified. The article reviews the currently available data on the cellular and molecular basis of radiation induced CNS side effects.   http://www.bjcancer.com © 2001 Cancer Research Campaig

    The Polyamine Inhibitor Alpha-Difluoromethylornithine Modulates Hippocampus-Dependent Function after Single and Combined Injuries

    Get PDF
    Exposure to uncontrolled irradiation in a radiologic terrorism scenario, a natural disaster or a nuclear battlefield, will likely be concomitantly superimposed on other types of injury, such as trauma. In the central nervous system, radiation combined injury (RCI) involving irradiation and traumatic brain injury may have a multifaceted character. This may entail cellular and molecular changes that are associated with cognitive performance, including changes in neurogenesis and the expression of the plasticity-related immediate early gene Arc. Because traumatic stimuli initiate a characteristic early increase in polyamine metabolism, we hypothesized that treatment with the polyamine inhibitor alpha-difluoromethylornithine (DFMO) would reduce the adverse effects of single or combined injury on hippocampus structure and function. Hippocampal dependent cognitive impairments were quantified with the Morris water maze and showed that DFMO effectively reversed cognitive impairments after all injuries, particularly traumatic brain injury. Similar results were seen with respect to the expression of Arc protein, but not neurogenesis. Given that polyamines have been found to modulate inflammatory responses in the brain we also assessed the numbers of total and newly born activated microglia, and found reduced numbers of newly born cells. While the mechanisms responsible for the improvement in cognition after DFMO treatment are not yet clear, the present study provides new and compelling data regarding the potential use of DFMO as a potential countermeasure against the adverse effects of single or combined injury

    Experimental concepts for toxicity prevention and tissue restoration after central nervous system irradiation

    Get PDF
    Several experimental strategies of radiation-induced central nervous system toxicity prevention have recently resulted in encouraging data. The present review summarizes the background for this research and the treatment results. It extends to the perspectives of tissue regeneration strategies, based for example on stem and progenitor cells. Preliminary data suggest a scenario with individually tailored strategies where patients with certain types of comorbidity, resulting in impaired regeneration reserve capacity, might be considered for toxicity prevention, while others might be "salvaged" by delayed interventions that circumvent the problem of normal tissue specificity. Given the complexity of radiation-induced changes, single target interventions might not suffice. Future interventions might vary with patient age, elapsed time from radiotherapy and toxicity type. Potential components include several drugs that interact with neurodegeneration, cell transplantation (into the CNS itself, the blood stream, or both) and creation of reparative signals and a permissive microenvironment, e.g., for cell homing. Without manipulation of the stem cell niche either by cell transfection or addition of appropriate chemokines and growth factors and by providing normal perfusion of the affected region, durable success of such cell-based approaches is hard to imagine

    Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges

    Get PDF
    Significant progress has been made during the past decade towards the clinical adoption of cell-based therapeutics. However, existing cell-delivery approaches have shown limited success, with numerous studies showing fewer than 5% of injected cells persisting at the site of injection within days of transplantation. Although consideration is being increasingly given to clinical trial design, little emphasis has been given to tools and protocols used to administer cells. The different behaviours of various cell types, dosing accuracy, precise delivery, and cell retention and viability post-injection are some of the obstacles facing clinical translation. For efficient injectable cell transplantation, accurate characterisation of cellular health post-injection and the development of standardised administration protocols are required. This review provides an overview of the challenges facing effective delivery of cell therapies, examines key studies that have been carried out to investigate injectable cell delivery, and outlines opportunities for translating these findings into more effective cell-therapy interventions

    Medical devices, electronic health records and assuring patient safety : Future challenges?

    No full text
    The patient safety movement was triggered by publications showing that modern health care is more unsafe than road travel and that more patients are killed annually by avoidable adverse events than by breast cancer [1]. As a result, an urgent need to improve patient safety has dominated international health care systems over the last decade. Some examples of safety issues that healthcare actively tries to address are: reducing the incidence of hospital-acquired infections, avoiding errors with patient identification (wrong patient, wrong procedure, wrong side), errors with drug prescription and administration (wrong drug, wrong dose, wrong route), recognizing deteriorating patients earlier to allow timely life-saving treatment, developing systems for rapid appropriate treatment for stroke and myocardial infarction and improving care for frail elderly patients with multiple diseases using many drugs. Addressing these issues has proven more difficult than anticipated and actual progress in patient safety has been frustratingly slow. Reference [2] Root cause analysis of serious adverse events invariably points to problems with communication and orientation as the most important contributing factors. Reference [3] Given that for centuries doctors used their - often illegible - handwriting to take notes and prescribe drugs, it is understandable that the advent of electronic health records (EHR) created huge anticipation for safer and improved work flows, as well as better connectivity between care givers - both within the hospital as between the hospital and general practitioners, nursing homes, rehabilitation facilities and pharmacies. By signing the Health Information Technology for Economic and Clinical Health (HITECH) Act in 2009 and incentivizing EHR adoption, the Obama administration made implementation of electronic health records an integral part of improving efficiency and safety of health care in the United States

    Superoxide Enhances Ca 2+

    No full text
    corecore