44 research outputs found

    Humans and Insects Decide in Similar Ways

    Get PDF
    Behavioral ecologists assume that animals use a motivational mechanism for decisions such as action selection and time allocation, allowing the maximization of their fitness. They consider both the proximate and ultimate causes of behavior in order to understand this type of decision-making in animals. Experimental psychologists and neuroeconomists also study how agents make decisions but they consider the proximate causes of the behavior. In the case of patch-leaving, motivation-based decision-making remains simple speculation. In contrast to other animals, human beings can assess and evaluate their own motivation by an introspection process. It is then possible to study the declared motivation of humans during decision-making and discuss the mechanism used as well as its evolutionary significance. In this study, we combine both the proximate and ultimate causes of behavior for a better understanding of the human decision-making process. We show for the first time ever that human subjects use a motivational mechanism similar to small insects such as parasitoids [1] and bumblebees [2] to decide when to leave a patch. This result is relevant for behavioral ecologists as it supports the biological realism of this mechanism. Humans seem to use a motivational mechanism of decision making known to be adaptive to a heterogeneously distributed resource. As hypothesized by Hutchinson et al. [3] and Wilke and Todd [4], our results are consistent with the evolutionary shaping of decision making because hominoids were hunters and gatherers on food patches for more than two million years. We discuss the plausibility of a neural basis for the motivation mechanism highlighted here, bridging the gap between behavioral ecology and neuroeconomy. Thus, both the motivational mechanism observed here and the neuroeconomy findings are most likely adaptations that were selected for during ancestral times

    Functional polymorphisms in genes of the Angiotensin and Serotonin systems and risk of hypertrophic cardiomyopathy: AT1R as a potential modifier

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiotensin and serotonin have been identified as inducers of cardiac hypertrophy. DNA polymorphisms at the genes encoding components of the angiotensin and serotonin systems have been associated with the risk of developing cardiovascular diseases, including left ventricular hypertrophy (LVH).</p> <p>Methods</p> <p>We genotyped five polymorphisms of the <it>AGT</it>, <it>ACE</it>, <it>AT1R</it>, <it>5-HT2A</it>, and <it>5-HTT </it>genes in 245 patients with Hypertrophic Cardiomyopathy (HCM; 205 without an identified sarcomeric gene mutation), in 145 patients with LVH secondary to hypertension, and 300 healthy controls.</p> <p>Results</p> <p>We found a significantly higher frequency of <it>AT1R </it>1166 C carriers (CC+AC) among the HCM patients without sarcomeric mutations compared to controls (p = 0.015; OR = 1.56; 95%CI = 1.09-2.23). The <it>AT1R </it>1166 C was also more frequent among patients who had at least one affected relative, compared to sporadic cases. This allele was also associated with higher left ventricular wall thickness in both, HCM patients with and without sarcomeric mutations.</p> <p>Conclusions</p> <p>The 1166 C <it>AT1R </it>allele could be a risk factor for cardiac hypertrophy in patients without sarcomeric mutations. Other variants at the <it>AGT</it>, <it>ACE</it>, <it>5-HT2A </it>and <it>5-HTT </it>did not contribute to the risk of cardiac hypertrophy.</p
    corecore