206 research outputs found

    Rigid Supersymmetric Theories in Curved Superspace

    Full text link
    We present a uniform treatment of rigid supersymmetric field theories in a curved spacetime M\mathcal{M}, focusing on four-dimensional theories with four supercharges. Our discussion is significantly simpler than earlier treatments, because we use classical background values of the auxiliary fields in the supergravity multiplet. We demonstrate our procedure using several examples. For M=AdS4\mathcal{M}=AdS_4 we reproduce the known results in the literature. A supersymmetric Lagrangian for M=S4\mathcal{M}=\mathbb{S}^4 exists, but unless the field theory is conformal, it is not reflection positive. We derive the Lagrangian for M=S3×R\mathcal{M}=\mathbb{S}^3\times \mathbb{R} and note that the time direction R\mathbb{R} can be rotated to Euclidean signature and be compactified to §1\S^1 only when the theory has a continuous R-symmetry. The partition function on M=S3ק1\mathcal{M}=\mathbb{S}^3\times \S^1 is independent of the parameters of the flat space theory and depends holomorphically on some complex background gauge fields. We also consider R-invariant N=2\mathcal{N}=2 theories on S3\mathbb{S}^3 and clarify a few points about them.Comment: 26 pages, uses harvmac; v2 with added reference

    Support and Assessment for Fall Emergency Referrals (SAFER 1) trial protocol. Computerised on-scene decision support for emergency ambulance staff to assess and plan care for older people who have fallen: evaluation of costs and benefits using a pragmatic cluster randomised trial

    Get PDF
    Background: Many emergency ambulance calls are for older people who have fallen. As half of them are left at home, a community-based response may often be more appropriate than hospital attendance. The SAFER 1 trial will assess the costs and benefits of a new healthcare technology - hand-held computers with computerised clinical decision support (CCDS) software - to help paramedics decide who needs hospital attendance, and who can be safely left at home with referral to community falls services. Methods/Design: Pragmatic cluster randomised trial with a qualitative component. We shall allocate 72 paramedics ('clusters') at random between receiving the intervention and a control group delivering care as usual, of whom we expect 60 to complete the trial. Patients are eligible if they are aged 65 or older, live in the study area but not in residential care, and are attended by a study paramedic following an emergency call for a fall. Seven to 10 days after the index fall we shall offer patients the opportunity to opt out of further follow up. Continuing participants will receive questionnaires after one and 6 months, and we shall monitor their routine clinical data for 6 months. We shall interview 20 of these patients in depth. We shall conduct focus groups or semi-structured interviews with paramedics and other stakeholders. The primary outcome is the interval to the first subsequent reported fall (or death). We shall analyse this and other measures of outcome, process and cost by 'intention to treat'. We shall analyse qualitative data thematically. Discussion: Since the SAFER 1 trial received funding in August 2006, implementation has come to terms with ambulance service reorganisation and a new national electronic patient record in England. In response to these hurdles the research team has adapted the research design, including aspects of the intervention, to meet the needs of the ambulance services. In conclusion this complex emergency care trial will provide rigorous evidence on the clinical and cost effectiveness of CCDS for paramedics in the care of older people who have fallen

    Maximum occlusal force and medial mandibular flexure in relation to vertical facial pattern: a cross-sectional study

    Get PDF
    BACKGROUND: Vertical facial pattern may be related to the direction of pull of the masticatory muscles, yet its effect on occlusal force and elastic deformation of the mandible still is unclear. This study tested whether the variation in vertical facial pattern is related to the variation in maximum occlusal force (MOF) and medial mandibular flexure (MMF) in 51 fully-dentate adults. METHODS: Data from cephalometric analysis according to the method of Ricketts were used to divide the subjects into three groups: Dolichofacial (n = 6), Mesofacial (n = 10) and Brachyfacial (n = 35). Bilateral MOF was measured using a cross-arch force transducer placed in the first molar region. For MMF, impressions of the mandibular occlusal surface were made in rest (R) and in maximum opening (O) positions. The impressions were scanned, and reference points were selected on the occlusal surface of the contralateral first molars. MMF was calculated by subtracting the intermolar distance in O from the intermolar distance in R. Data were analysed by ANCOVA (fixed factors: facial pattern, sex; covariate: body mass index (BMI); alpha = 0.05). RESULTS: No significant difference of MOF or MMF was found among the three facial patterns (P = 0.62 and P = 0.72, respectively). BMI was not a significant covariate for MOF or MMF (P > 0.05). Sex was a significant factor only for MOF (P = 0.007); males had higher MOF values than females. CONCLUSION: These results suggest that MOF and MMF did not vary as a function of vertical facial pattern in this Brazilian sample

    Quantifying the Evolution of Vascular Barrier Disruption in Advanced Atherosclerosis with Semipermeant Nanoparticle Contrast Agents

    Get PDF
    Acute atherothrombotic occlusion in heart attack and stroke implies disruption of the vascular endothelial barrier that exposes a highly procoagulant intimal milieu. However, the evolution, severity, and pathophysiological consequences of vascular barrier damage in atherosclerotic plaque remain unknown, in part because quantifiable methods and experimental models are lacking for its in vivo assessment.To develop quantitative nondestructive methodologies and models for detecting vascular barrier disruption in advanced plaques.Sustained hypercholesterolemia in New Zealand White (NZW) rabbits for >7-14 months engendered endothelial barrier disruption that was evident from massive and rapid passive penetration and intimal trapping of perfluorocarbon-core nanoparticles (PFC-NP: ∼250 nm diameter) after in vivo circulation for as little as 1 hour. Only older plaques (>7 mo), but not younger plaques (<3 mo) demonstrated the marked enhancement of endothelial permeability to these particles. Electron microscopy revealed a complex of subintimal spongiform channels associated with endothelial apoptosis, superficial erosions, and surface-penetrating cholesterol crystals. Fluorine ((19)F) magnetic resonance imaging and spectroscopy (MRI/MRS) enabled absolute quantification (in nanoMolar) of the passive permeation of PFC-NP into the disrupted vascular lesions by sensing the unique spectral signatures from the fluorine core of plaque-bound PFC-NP.The application of semipermeant nanoparticles reveals the presence of profound barrier disruption in later stage plaques and focuses attention on the disrupted endothelium as a potential contributor to plaque vulnerability. The response to sustained high cholesterol levels yields a progressive deterioration of the vascular barrier that can be quantified with fluorine MRI/MRS of passively permeable nanostructures. The possibility of plaque classification based on the metric of endothelial permeability to nanoparticles is suggested

    Stroma Regulates Increased Epithelial Lateral Cell Adhesion in 3D Culture: A Role for Actin/Cadherin Dynamics

    Get PDF
    Cell shape and tissue architecture are controlled by changes to junctional proteins and the cytoskeleton. How tissues control the dynamics of adhesion and cytoskeletal tension is unclear. We have studied epithelial tissue architecture using 3D culture models and found that adult primary prostate epithelial cells grow into hollow acinus-like spheroids. Importantly, when co-cultured with stroma the epithelia show increased lateral cell adhesions. To investigate this mechanism further we aimed to: identify a cell line model to allow repeatable and robust experiments; determine whether or not epithelial adhesion molecules were affected by stromal culture; and determine which stromal signalling molecules may influence cell adhesion in 3D epithelial cell cultures.The prostate cell line, BPH-1, showed increased lateral cell adhesion in response to stroma, when grown as 3D spheroids. Electron microscopy showed that 9.4% of lateral membranes were within 20 nm of each other and that this increased to 54% in the presence of stroma, after 7 days in culture. Stromal signalling did not influence E-cadherin or desmosome RNA or protein expression, but increased E-cadherin/actin co-localisation on the basolateral membranes, and decreased paracellular permeability. Microarray analysis identified several growth factors and pathways that were differentially expressed in stroma in response to 3D epithelial culture. The upregulated growth factors TGFβ2, CXCL12 and FGF10 were selected for further analysis because of previous associations with morphology. Small molecule inhibition of TGFβ2 signalling but not of CXCL12 and FGF10 signalling led to a decrease in actin and E-cadherin co-localisation and increased paracellular permeability.In 3D culture models, paracrine stromal signals increase epithelial cell adhesion via adhesion/cytoskeleton interactions and TGFβ2-dependent mechanisms may play a key role. These findings indicate a role for stroma in maintaining adult epithelial tissue morphology and integrity

    Surface-Associated Plasminogen Binding of Cryptococcus neoformans Promotes Extracellular Matrix Invasion

    Get PDF
    BACKGROUND:The fungal pathogen Cryptococcus neoformans is a leading cause of illness and death in persons with predisposing factors, including: malignancies, solid organ transplants, and corticosteroid use. C. neoformans is ubiquitous in the environment and enters into the lungs via inhalation, where it can disseminate through the bloodstream and penetrate the central nervous system (CNS), resulting in a difficult to treat and often-fatal infection of the brain, called meningoencephalitis. Plasminogen is a highly abundant protein found in the plasma component of blood and is necessary for the degradation of fibrin, collagen, and other structural components of tissues. This fibrinolytic system is utilized by cancer cells during metastasis and several pathogenic species of bacteria have been found to manipulate the host plasminogen system to facilitate invasion of tissues during infection by modifying the activation of this process through the binding of plasminogen at their surface. METHODOLOGY:The invasion of the brain and the central nervous system by penetration of the protective blood-brain barrier is a prerequisite to the establishment of meningoencephalitis by the opportunistic fungal pathogen C. neoformans. In this study, we examined the ability of C. neoformans to subvert the host plasminogen system to facilitate tissue barrier invasion. Through a combination of biochemical, cell biology, and proteomic approaches, we have shown that C. neoformans utilizes the host plasminogen system to cross tissue barriers, providing support for the hypothesis that plasminogen-binding may contribute to the invasion of the blood-brain barrier by penetration of the brain endothelial cells and underlying matrix. In addition, we have identified the cell wall-associated proteins that serve as plasminogen receptors and characterized both the plasminogen-binding and plasmin-activation potential for this significant human pathogen. CONCLUSIONS:The results of this study provide evidence for the cooperative role of multiple virulence determinants in C. neoformans pathogenesis and suggest new avenues for the development of anti-infective agents in the prevention of fungal tissue invasion

    Autosomal recessive cerebellar ataxias

    Get PDF
    Autosomal recessive cerebellar ataxias (ARCA) are a heterogeneous group of rare neurological disorders involving both central and peripheral nervous system, and in some case other systems and organs, and characterized by degeneration or abnormal development of cerebellum and spinal cord, autosomal recessive inheritance and, in most cases, early onset occurring before the age of 20 years. This group encompasses a large number of rare diseases, the most frequent in Caucasian population being Friedreich ataxia (estimated prevalence 2–4/100,000), ataxia-telangiectasia (1–2.5/100,000) and early onset cerebellar ataxia with retained tendon reflexes (1/100,000). Other forms ARCA are much less common. Based on clinicogenetic criteria, five main types ARCA can be distinguished: congenital ataxias (developmental disorder), ataxias associated with metabolic disorders, ataxias with a DNA repair defect, degenerative ataxias, and ataxia associated with other features. These diseases are due to mutations in specific genes, some of which have been identified, such as frataxin in Friedreich ataxia, α-tocopherol transfer protein in ataxia with vitamin E deficiency (AVED), aprataxin in ataxia with oculomotor apraxia (AOA1), and senataxin in ataxia with oculomotor apraxia (AOA2). Clinical diagnosis is confirmed by ancillary tests such as neuroimaging (magnetic resonance imaging, scanning), electrophysiological examination, and mutation analysis when the causative gene is identified. Correct clinical and genetic diagnosis is important for appropriate genetic counseling and prognosis and, in some instances, pharmacological treatment. Due to autosomal recessive inheritance, previous familial history of affected individuals is unlikely. For most ARCA there is no specific drug treatment except for coenzyme Q10 deficiency and abetalipoproteinemia
    corecore