2,870 research outputs found

    Vertex routing models

    Full text link
    A class of models describing the flow of information within networks via routing processes is proposed and investigated, concentrating on the effects of memory traces on the global properties. The long-term flow of information is governed by cyclic attractors, allowing to define a measure for the information centrality of a vertex given by the number of attractors passing through this vertex. We find the number of vertices having a non-zero information centrality to be extensive/sub-extensive for models with/without a memory trace in the thermodynamic limit. We evaluate the distribution of the number of cycles, of the cycle length and of the maximal basins of attraction, finding a complete scaling collapse in the thermodynamic limit for the latter. Possible implications of our results on the information flow in social networks are discussed.Comment: 12 pages, 6 figure

    Synthesis and Properties of Dipyridylcyclopentenes

    Get PDF
    A short and general route to the substituted dipyridylcyclopentenes was explored and several new compounds belonging to this new group of diarylethenes were synthesized. The study of their photochromic and thermochromic properties shows that the rate of the thermal ring opening is strongly dependent on the polarity of the solvent.

    Optimizing Control Based on Output Feedback

    Get PDF
    In the framework of process optimization, the use of measurements to compensate the effect of uncertainty has re-emerged as an active area of research. One of the ideas therein is to adapt the inputs in order to track the active constraints and push certain sensitivities to zero. In perturbation- based optimization, the sensitivities are evaluated by perturbation of the inputs and measurement of the cost function, which can be experimentally time consuming. However, since more measurements (typically the outputs) than just the cost function are available, the idea developed in this paper is to incorporate the outputs in a measurement-based optimization framework. This is done using an extension to the neighboring-extremal scheme for the case of output measurements. If measurement noise can be neglected, the approach is shown to converge to the optimum in at most two input updates. The effect of measurement noise is also investigated. The strength of neighboring-extremal output feedback for optimization is illustrated on a continuous chemical reactor example

    Magnetism and superconductivity of strongly correlated electrons on the triangular lattice

    Full text link
    We investigate the phase diagram of the \tj Model on a triangular lattice using a Variational Monte-Carlo approach. We use an extended set of Gutzwiller projected fermionic trial wave-functions allowing for simultaneous magnetic and superconducting order parameters. We obtain energies at zero doping for the spin-1/2 Heisenberg model in very good agreement with the best estimates. Upon electron doping (with a hopping integral t<0t<0) this phase is surprisingly stable variationally up to n1.4n\approx 1.4, while the dx2y2+idxyd_{x^{2}-y^{2}}+i d_{xy} order parameter is rather weak and disappears at n1.1n\approx 1.1. For hole doping however the coplanar magnetic state is almost immediately destroyed and dx2y2+idxyd_{x^{2}-y^{2}}+i d_{xy} superconductivity survives down to n0.8n\approx 0.8. For lower nn, between 0.2 and 0.8, we find saturated ferromagnetism. Moreover, there is evidence for a narrow spin density wave phase around n0.8n\approx 0.8. Commensurate flux phases were also considered, but these turned out {\em not} to be competitive at finite doping.Comment: 11 pages; 11 figure

    Novel Nonreciprocal Acoustic Effects in Antiferromagnets

    Full text link
    The possible occurrence of nonreciprocal acoustic effects in antiferromagnets in the absence of an external magnetic field is investigated using both (i) a microscopic formulation of the magnetoelastic interaction between spins and phonons and (ii) symmetry arguments. We predict for certain antiferromagnets the existence of two new nonreciprocal (non-time invariant) effects: A boundary-condition induced nonreciprocal effect and the occurrence of transversal phonon modes propagating in opposite directions having different velocities. Estimates are given and possible materials for these effects to be observed are suggested.Comment: Euro. Phys. Lett. (in press

    Ordering in Two-Dimensional Ising Models with Competing Interactions

    Get PDF
    We study the 2D Ising model on a square lattice with additional non-equal diagonal next-nearest neighbor interactions. The cases of classical and quantum (transverse) models are considered. Possible phases and their locations in the space of three Ising couplings are analyzed. In particular, incommensurate phases occurring only at non-equal diagonal couplings, are predicted. We also analyze a spin-pseudospin model comprised of the quantum Ising model coupled to XY spin chains in a particular region of interactions, corresponding to the Ising sector's super-antiferromagnetic (SAF) ground state. The spin-SAF transition in the coupled Ising-XY model into a phase with co-existent SAF Ising (pseudospin) long-range order and a spin gap is considered. Along with destruction of the quantum critical point of the Ising sector, the phase digram of the Ising-XY model can also demonstrate a re-entrance of the spin-SAF phase. A detailed study of the latter is presented. The mechanism of the re-entrance, due to interplay of interactions in the coupled model, and the conditions of its appearance are established. Applications of the spin-SAF theory for the transition in the quarter-filled ladder compound NaV2O5 are discussed.Comment: Minor revisions and refs. added; published version of the invited paper in a special issue of "Low Temp. Physics
    corecore