11 research outputs found
Cetacean <i>Morbillivirus</i>: Current knowledge and future directions
We review the molecular and epidemiological characteristics of cetacean morbillivirus (CeMV) and the diagnosis and pathogenesis of associated disease, with six different strains detected in cetaceans worldwide. CeMV has caused epidemics with high mortality in odontocetes in Europe, the USA and Australia. It represents a distinct species within the Morbillivirus genus. Although most CeMV strains are phylogenetically closely related, recent data indicate that morbilliviruses recovered from Indo-Pacific bottlenose dolphins (Tursiops aduncus), from Western Australia, and a Guiana dolphin (Sotalia guianensis), from Brazil, are divergent. The signaling lymphocyte activation molecule (SLAM) cell receptor for CeMV has been characterized in cetaceans. It shares higher amino acid identity with the ruminant SLAM than with the receptors of carnivores or humans, reflecting the evolutionary history of these mammalian taxa. In Delphinidae, three amino acid substitutions may result in a higher affinity for the virus. Infection is diagnosed by histology, immunohistochemistry, virus isolation, RT-PCR, and serology. Classical CeMV-associated lesions include bronchointerstitial pneumonia, encephalitis, syncytia, and lymphoid depletion associated with immunosuppression. Cetaceans that survive the acute disease may develop fatal secondary infections and chronic encephalitis. Endemically infected, gregarious odontocetes probably serve as reservoirs and vectors. Transmission likely occurs through the inhalation of aerosolized virus but mother to fetus transmission was also reported
Phocine distemper Virus: Current knowledge and future directions
Phocine distemper virus (PDV) was first recognized in 1988 following a massive epidemic in harbor and grey seals in north-western Europe. Since then, the epidemiology of infection in North Atlantic and Arctic pinnipeds has been investigated. In the western North Atlantic endemic infection in harp and grey seals predates the European epidemic, with relatively small, localized mortality events occurring primarily in harbor seals. By contrast, PDV seems not to have become established in European harbor seals following the 1988 epidemic and a second event of similar magnitude and extent occurred in 2002. PDV is a distinct species within the Morbillivirus genus with minor sequence variation between outbreaks over time. There is now mounting evidence of PDV-like viruses in the North Pacific/Western Arctic with serological and molecular evidence of infection in pinnipeds and sea otters. However, despite the absence of associated mortality in the region, there is concern that the virus may infect the large Pacific harbor seal and northern elephant seal populations or the endangered Hawaiian monk seals. Here, we review the current state of knowledge on PDV with particular focus on developments in diagnostics, pathogenesis, immune response, vaccine development, phylogenetics and modeling over the past 20 years
Pathological Findings in Leatherback Sea Turtles (Dermochelys coriacea) During an Unusual Mortality Event in São Paulo, Brazil, in 2016
Trypanosoma cruzi Genotype I and Toxoplasma gondii Co-infection in a Red-Necked Wallaby
Uterine Leiomyoma and Prolapse in a Live-stranded Atlantic Spotted Dolphin (Stenella frontalis)
Facial Squamous Cell Carcinoma and Abdominal Peripheral Nerve Sheath Tumour with Rhabdomyoblastic Differentiation in a Rough-toothed Dolphin (Steno bredanensis)
Immunohistochemical investigation of the cross-reactivity of selected cell markers in formalin-fixed, paraffin-embedded lymphoid tissues of Franciscana ( Pontoporia blainvillei )
A considerable amount of knowledge on natural and anthropogenic pathologic conditions affecting different cetacean species has been gained over the last decades. Nonetheless, the immunopathological bases for most of these processes have been poorly documented or remain unknown. Comparative immunopathological investigations in these species are precluded by the limited number of specific antibodies, most of which are not commercially available, and the reduced spectrum of validated and/or cross-reactive ones. To partially fill in this gap of knowledge, a set of commercially available primary antibodies were tested for cross-reactivity against leukocytes and cytokines in formalin-fixed, paraffin-embedded (FFPE) lymphoid tissues (lymph nodes, spleen and thymus) of three bycaught, apparently healthy and fresh Franciscanas (Pontoporia blainvillei) using immunohistochemistry. On the basis of similar region specificity within the lymphoid organs, cellular morphology and staining pattern with human control tissues, 13/19 primary antibodies (caspase 3, CD3, CD57, CD68, FoxP3, HLA-DRα, IFNγ, IgG, IL4, IL10, Lysozyme, TGFβ and PAX-5) exhibited satisfactory cross-reactivity. Our results expand the spectrum of suitable cross-reactive primary antibodies in FFPE cetacean tissues. Further comparative immunopathological studies focused on infectious diseases and ecotoxicology may benefit from establishment of baseline expression of immunologically relevant molecules in various cetaceans species.58520,7491,846Q1Q1SCI
