50 research outputs found

    Rapid communication: Physical and genetic mapping of the Peroxisome Proliferator Activated Receptor γ (PPARγ) gene to porcine chromosome 13

    Get PDF
    Genus and Species. Sus scrofa. Locus Name. Peroxisome Proliferator Activated Receptor gamma (PPARγ). Source and Description of Primers. Primers were designed in exon 5 from a published porcine cDNA sequence (GenBank accession no. AJ006756). Forward primer: 5′ GAC ATG AAT TCC TTA ATG 3′; reverse primer: 5′ ACT TCA CAG CGA ACT CGA ACT T 3′

    Mapping and Investigation of Novel Candidate Genes for Fatness, Growth, and Feed Intake in the Pig

    Get PDF
    Five new candidate genes for fatness, growth, and feed intake traits were studied. The genes were chosen based on their presumed biological action for a given trait of interest. A molecular genetics polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) approach was used to identify genetic differences (polymorphisms) in the porcine melanocortin-4 receptor (MC4R), melanocortin-5 receptor (MC5R), cocaine and amphetamine-regulated transcript (CART), peroxisome proliferator activated receptor _ (PPAR_), and prepro-orexin genes. These genes were genetically mapped using several markers on porcine chromosomes (SSC) 1, 6, 12, 13, and 16, respectively. All five genes also were physically mapped with a pig/rodent somatic cell hybrid panel. The physical locations of all five genes are as follows: MC4R (SSC1q22-27), MC5R (SSC6q24-(1/2)q31), prepro-orexin (SSC12p13- p11), PPAR_ (SSC13q23-q41), and CART (SSC16q21). The localization of these genes is reasonably consistent with previous chromosome painting results, indicating conserved (similar) regions between human and pig chromosomes. We also looked at the effect of these genes on traits of interest. The effect of a MC4R polymorphism was investigated in a large population of pigs from several commercial lines. MC4R genotypes were significantly associated with fatness, growth rate, and feed intake traits. Further studies on the effect of these candidate genes are underway

    New investigations around CYP11A1 and its possible involvement in an androstenone QTL characterised in Large White pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previously, in boars with extreme androstenone levels, differential expression of the <it>CYP11A1 </it>gene in the testes has been characterised. <it>CYP11A1 </it>is located in a region where a QTL influencing boar fat androstenone levels has been detected in a Large White pig population. Clarifying the role of CYP11A1 in boar taint is important because it catalyses the initial step of androstenone synthesis and also of steroid synthesis.</p> <p>Results</p> <p>A genome-wide association study located <it>CYP11A1 </it>at approximately 1300 kb upstream from SNP H3GA0021967, defining the centre of the region containing the QTL for androstenone variation. In this study, we partially sequenced the <it>CYP11A1 </it>gene and identified several new single nucleotide polymorphisms (SNP) within it. Characterisation of one animal, heterozygous for <it>CYP11A1 </it>testicular expression but homozygous for a haplotype of a large region containing <it>CYP11A1</it>, revealed that variation of <it>CYP11A1 </it>expression is probably regulated by a mutation located downstream from the SNP H3GA0021967. We analysed <it>CYP11A1 </it>expression in LW families according to haplotypes of the QTL region's centre. Effects of haplotypes on <it>CYP11A1 </it>expression and on androstenone accumulation were not concordant.</p> <p>Conclusion</p> <p>This study shows that testicular expression of <it>CYP11A1 </it>is not solely responsible for the QTL influencing boar fat androstenone levels. As a conclusion, we propose to refute the hypothesis that a single mutation located near the centre of the QTL region could control androstenone accumulation in fat by regulating the <it>CYP11A1 </it>expression.</p

    Large scale genome-wide association and LDLA mapping study identifies QTLs for boar taint and related sex steroids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Boar taint is observed in a high proportion of uncastrated male pigs and is characterized by an unpleasant odor/flavor in cooked meat, primarily caused by elevated levels of androstenone and skatole. Androstenone is a steroid produced in the testis in parallel with biosynthesis of other sex steroids like testosterone and estrogens. This represents a challenge when performing selection against androstenone in breeding programs, without simultaneously decreasing levels of other steroids. The aim of this study was to use high-density genome wide association (GWA) in combination with linkage disequilibrium-linkage analysis (LDLA) to identify quantitative trait loci (QTL) associated with boar taint compounds and related sex steroids in commercial Landrace (n = 1,251) and Duroc (n = 918) breeds.</p> <p>Results</p> <p>Altogether, 14 genome wide significant (GWS) QTL regions for androstenone in subcutaneous fat were obtained from the LDLA study in Landrace and 14 GWS QTL regions in Duroc. LDLA analysis revealed that 7 of these QTL regions, located on SSC 1, 2, 3, 7 and 15, were obtained in both breeds. All 14 GWS androstenone QTLs in Landrace are also affecting the estrogens at chromosome wise significance (CWS) or GWS levels, while in Duroc, 3 of the 14 QTLs affect androstenone without affecting any of the estrogens. For skatole, 10 and 4 QTLs were GWS in the LDLA analysis for Landrace and Duroc respectively, with 4 of these detected in both breeds. The GWS QTLs for skatole obtained by LDLA are located at SSC 1, 5, 6, 7, 10, 11, 13 and 14.</p> <p>Conclusion</p> <p>This is the first report applying the Porcine 60 K SNP array for simultaneous analysis of boar taint compounds and related sex hormones, using both GWA and LDLA approaches. Several QTLs are involved in regulation of androstenone and skatole, and most of the QTLs for androstenone are also affecting the levels of estrogens. Seven QTLs for androstenone were detected in one breed and confirmed in the other, i.e. in an independent sample, although the majority of QTLs are breed specific. Most QTLs for skatole do not negatively affect other sex hormones and should be easier to implement into the breeding scheme.</p

    Association of PPARγ2 polymorphisms with carcass and meat quality traits in a Pietrain x Jinhua F2 population

    Get PDF
    The PPARγ2 gene is a key regulator of both proliferation and preadipocyte differentiation in mammals. Herein its genotype and allele frequencies were analyzed using PCR-SSCP in eight pig breeds (N = 416). Two kinds of polymorphisms of the PPARγ2 gene were detected, including a previously reported shift SNP A177G (Met59Val) in exon 1 and a novel silent mutation G876A in exon 5. The results revealed that European pig breeds carry a higher allele A frequency at the A177G locus and a fixed GG genotype at the G876A locus. Allele A at the G876A locus was only found in Jinhua pigs. The association between haplotype (A177G/G876A) and carcass and meat quality traits was analyzed in a Pietrain x Jinhua F2 population (N = 248). The PPARγ2 gene was found to be significantly associated with backfat thickness at the shoulder (p < 0.05), 6–7th ribs (p < 0.01), last rib (p < 0.01), gluteus medius (p <0.05) and ham weight (p < 0.01). Significant effects of different haplotypes on ham weight and backfat thickness at the 6–7th ribs, last rib, and gluteus medius were also observed

    Mapping carcass and meat quality QTL on Sus Scrofa chromosome 2 in commercial finishing pigs

    Get PDF
    Quantitative trait loci (QTL) affecting carcass and meat quality located on SSC2 were identified using variance component methods. A large number of traits involved in meat and carcass quality was detected in a commercial crossbred population: 1855 pigs sired by 17 boars from a synthetic line, which where homozygous (A/A) for IGF2. Using combined linkage and linkage disequilibrium mapping (LDLA), several QTL significantly affecting loin muscle mass, ham weight and ham muscles (outer ham and knuckle ham) and meat quality traits, such as Minolta-L* and -b*, ultimate pH and Japanese colour score were detected. These results agreed well with previous QTL-studies involving SSC2. Since our study is carried out on crossbreds, different QTL may be segregating in the parental lines. To address this question, we compared models with a single QTL-variance component with models allowing for separate sire and dam QTL-variance components. The same QTL were identified using a single QTL variance component model compared to a model allowing for separate variances with minor differences with respect to QTL location. However, the variance component method made it possible to detect QTL segregating in the paternal line (e.g. HAMB), the maternal lines (e.g. Ham) or in both (e.g. pHu). Combining association and linkage information among haplotypes improved slightly the significance of the QTL compared to an analysis using linkage information only

    Fine mapping of a QTL affecting levels of skatole on pig chromosome 7

    Get PDF
    Abstract Background Previous studies in the Norwegian pig breeds Landrace and Duroc have revealed a QTL for levels of skatole located in the region 74.7–80.5 Mb on SSC7. Skatole is one of the main components causing boar taint, which gives an undesirable smell and taste to the pig meat when heated. Surgical castration of boars is a common practice to reduce the risk of boar taint, however, a selection for boars genetically predisposed for low levels of taint would help eliminating the need for castration and be advantageous for both economic and welfare reasons. In order to identify the causal mutation(s) for the QTL and/or identify genetic markers for selection purposes we performed a fine mapping of the SSC7 skatole QTL region. Results A dense set of markers on SSC7 was obtained by whole genome re-sequencing of 24 Norwegian Landrace and 23 Duroc boars. Subsets of 126 and 157 SNPs were used for association analyses in Landrace and Duroc, respectively. Significant single markers associated with skatole spanned a large 4.4 Mb region from 75.9–80.3 Mb in Landrace, with the highest test scores found in a region between the genes NOVA1 and TGM1 (p < 0.001). The same QTL was obtained in Duroc and, although less significant, with associated SNPs spanning a 1.2 Mb region from 78.9–80.1 Mb (p < 0.01). The highest test scores in Duroc were found in genes of the granzyme family (GZMB and GZMH-like) and STXBP6. Haplotypes associated with levels of skatole were identified in Landrace but not in Duroc, and a haplotype block was found to explain 2.3% of the phenotypic variation for skatole. The SNPs in this region were not associated with levels of sex steroids. Conclusions Fine mapping of a QTL for skatole on SSC7 confirmed associations of this region with skatole levels in pigs. The QTL region was narrowed down to 4.4 Mb in Landrace and haplotypes explaining 2.3% of the phenotypic variance for skatole levels were identified. Results confirmed that sex steroids are not affected by this QTL region, making these markers attractive for selection against boar taint

    Association and Haplotype Analyses of Positional Candidate Genes in Five Genomic Regions Linked to Scrotal Hernia in Commercial Pig Lines

    Get PDF
    Scrotal hernia in pigs is a complex trait likely affected by genetic and environmental factors. A large-scale association analysis of positional and functional candidate genes was conducted in four previously identified genomic regions linked to hernia susceptibility on Sus scrofa chromosomes 2 and 12, as well as the fifth region around 67 cM on chromosome 2, respectively. In total, 151 out of 416 SNPs discovered were genotyped successfully. Using a family-based analysis we found that four regions surrounding ELF5, KIF18A, COL23A1 on chromosome 2, and NPTX1 on chromosome 12, respectively, may contain the genetic variants important for the development of the scrotal hernia in pigs. These findings were replicated in another case-control dataset. The SNPs around the ELF5 region were in high linkage disequilibrium with each other, and a haplotype containing SNPs from ELF5 and CAT was highly significantly associated with hernia development. Extensive re-sequencing work focused on the KIF18A gene did not detect any further SNPs with extensive association signals. These genes may be involved in the estrogen receptor signaling pathway (KIF18A and NPTX1), the epithelial-mesenchymal transition (ELF5) and the collagen metabolism pathway (COL23A1), which are associated with the important molecular characteristics of hernia pathophysiology. Further investigation on the molecular mechanisms of these genes may provide more molecular clues on hernia development in pigs
    corecore