6,527 research outputs found

    Optical tuning of the scattering length of cold alkaline earth atoms

    Full text link
    It is possible to tune the scattering length for the collision of ultra-cold 1S0 ground state alkaline-earth atoms using an optical Feshbach resonance. This is achieved with a laser far detuned from an excited molecular level near the frequency of the atomic intercombination 1S0--3P1 transition. Simple resonant scattering theory, illustrated by the example of 40Ca, allows an estimate of the magnitude of the effect. Unlike alkali metal species, large changes of the scattering length are possible while atom loss remains small, because of the very narrow line width of the molecular photoassociation transition. This raises prospects for control of atomic interactions for a system without magnetically tunable Feshbach resonance levels

    Fluctuations and Correlations in Nucleus-Nucleus Collisions within Transport Models

    Full text link
    Particle number fluctuations and correlations in nucleus-nucleus collisions at SPS and RHIC energies are studied within microscopic transport approaches. In this review we focus on the Hadron-String-Dynamics (HSD) and Ultra-relativistic-Quantum-Molecular-Dynamics (UrQMD) models The obtained results are compared with the available experimental data as well as with the statistical models and the model of independent sources. In particular the role of the experimental centrality selection and acceptance is discussed in detail for a variety of experimental fluctuations and correlation observables with the aim to extract information on the critical point in the (T,μB)(T,\mu_B) plane of strongly interacting matter

    A new look at the problem of gauge invariance in quantum field theory

    Full text link
    Quantum field theory is assumed to be gauge invariant. However it is well known that when certain quantities are calculated using perturbation theory the results are not gauge invariant. The non-gauge invariant terms have to be removed in order to obtain a physically correct result. In this paper we will examine this problem and determine why a theory that is supposed to be gauge invariant produces non-gauge invariant results.Comment: Accepted by Physica Scripta. 27 page

    Exact Mapping of the 2+1 Dirac Oscillator onto the Jaynes-Cummings Model: Ion-Trap Experimental Proposal

    Full text link
    We study the dynamics of the 2+1 Dirac oscillator exactly and find spin oscillations due to a {\it Zitterbewegung} of purely relativistic origin. We find an exact mapping of this quantum-relativistic system onto a Jaynes-Cummings model, describing the interaction of a two-level atom with a quantized single-mode field. This equivalence allows us to map a series of quantum optical phenomena onto the relativistic oscillator, and viceversa. We make a realistic experimental proposal, at reach with current technology, for studying the equivalence of both models using a single trapped ion.Comment: Revtex4, submitted for publicatio

    Stabilization of a (3+1)D soliton in a Kerr medium by a rapidly oscillating dispersion coefficient

    Full text link
    Using the numerical solution of the nonlinear Schroedinger equation and a variational method it is shown that (3+1)-dimensional spatiotemporal optical solitons can be stabilized by a rapidly oscillating dispersion coefficient in a Kerr medium with cubic nonlinearity. This has immediate consequence in generating dispersion-managed robust optical soliton in communication as well as possible stabilized Bose-Einstein condensates in periodic optical-lattice potential via an effective-mass formulation. We also critically compare the present stabilization with that obtained by a rapid sinusoidal oscillation of the Kerr nonlinearity parameter.Comment: 6 pages, 6 ps figures, New figure 4 added, Physical Review

    On the harmonics of the low-frequency quasi-periodic oscillation in GRS 1915+105

    Full text link
    GRS 1915+105 is a widely studied black hole binary, well known because of its extremely fast and complex variability. Flaring periods of high variability alternate with "stable" phases (the plateaux) when the flux is low, the spectra are hard and the timing properties of the source are similar to those of a number of black hole candidates in hard spectral state. In the plateaux the power density spectra are dominated by a low frequency quasi periodic oscillation (LFQPO) superposed onto a band limited noise continuum and accompanied by at least one harmonic. In this paper we focus on three plateaux, presenting the analysis of the power density spectra and in particular of the LFQPO and its harmonics. While plotting the LFQPO and all the harmonics together on a frequency-width plane, we found the presence of a positive trend of broadening when the frequency increases. This trend can shed light in the nature of the harmonic content of the LFQPO and challenges the usual interpretation of these timing features.Comment: 10 pages, 8 figures. Accepted for publication in MNRA

    Colour-singlet strangelets at finite temperature

    Full text link
    Considering massless uu and dd quarks, and massive (150 MeV) ss quarks in a bag with the bag pressure constant B1/4=145B^{1/4} = 145 MeV, a colour-singlet grand canonical partition function is constructed for temperatures T=1−30T = 1-30 MeV. Then the stability of finite size strangelets is studied minimizing the free energy as a function of the radius of the bag. The colour-singlet restriction has several profound effects when compared to colour unprojected case: (1) Now bulk energy per baryon is increased by about 250250 MeV making the strange quark matter unbound. (2) The shell structures are more pronounced (deeper). (3) Positions of the shell closure are shifted to lower AA-values, the first deepest one occuring at A=2A=2, famous HH-particle ! (4) The shell structure at A=2A=2 vanishes only at T∼30T\sim 30 MeV, though for higher AA-values it happens so at T∼20T\sim 20 MeV.Comment: Revtex file(8 pages)+6 figures(ps files) available on request from first Autho

    Zitterbewegung of optical pulses in nonlinear frequency conversion

    Full text link
    Pulse walk-off in the process of sum frequency generation in a nonlinear χ(2)\chi^{(2)} crystal is shown to be responsible for pulse jittering which is reminiscent to the Zitterbewegung (trembling motion) of a relativistic freely moving Dirac particle. An analytical expression for the pulse center of mass trajectory is derived in the no-pump-depletion limit, and numerical examples of Zitterbewegung are presented for sum frequency generation in periodically-poled lithium niobate. The proposed quantum-optical analogy indicates that frequency conversion in nonlinear optics could provide an experimentally accessible simulator of the Dirac equation.Comment: to be published in Journal of Physics B: Atomic, Molecular & Optical Physic

    Color plasma oscillation in strangelets

    Get PDF
    The dispersion relation and damping rate of longitudinal color plasmons in finite strange quark matter (strangelets) are evaluated in the limits of weak coupling, low temperature, and long wavelength. The property of the QCD vacuum surrounding a strangelet makes the frequency of the plasmons nearly the same as the color plasma frequency of bulk matter. The plasmons are damped by their coupling with individual excitations of particle-hole pairs of quarks, of which the energy levels are discretized by the boundary. For strangelets of macroscopic size, the lifetime of the plasmons is found to be proportional to the size, as in the case of the usual plasma oscillations in metal nanoparticles.Comment: 9 pages (REVTeX), 2 Postscript figures, to be published in Phys. Rev.
    • …
    corecore