1,135 research outputs found

    Implementation of Four Real-Time Software Defined Receivers and a Space-Time Decoder using Xilinx Virtex 2 Pro Field Programmable Gate Array

    Get PDF
    This paper describes the concept, architecture, development and demonstration of a real time, high performance, software defined 4-receiver system and a space time decoder to be implemented on a Xilinx Virtex 2 Pro Field Programmable Gate Array. It is designed and developed for research into receiver diversity and multiple input and multiple output (MIMO)wireless systems. Each receiver has a Freescale DSP56321 digital signal processor (DSP) to run synchronization, channel state estimation and equalization algorithms. The system is software defined to allow for flexibility in the choice of receiver demodulation formats, output data rates and space-time decoding schemes. Hardware, firmware and software aspects of the receiver and space time decoder system to meet design requirements are discussed

    A Twistor Formulation of the Non-Heterotic Superstring with Manifest Worldsheet Supersymmetry

    Get PDF
    We propose a new formulation of the D=3D=3 type II superstring which is manifestly invariant under both target-space N=2N=2 supersymmetry and worldsheet N=(1,1)N=(1,1) super reparametrizations. This gives rise to a set of twistor (commuting spinor) variables, which provide a solution to the two Virasoro constraints. The worldsheet supergravity fields are shown to play the r\^ole of auxiliary fields.Comment: 21p., LaTe

    A twistor-like D=10 superparticle action with manifest N=8 world-line supersymmetry

    Full text link
    We propose a new formulation of the D=10D=10 Brink-Schwarz superparticle which is manifestly invariant under both the target-space super-Poincar\'e group and the world-line local N=8N=8 superconformal group. This twistor-like construction naturally involves the sphere S8S^8 as a coset space of the D=10D=10 Lorentz group. The action contains only a finite set of auxiliary fields, but they appear in unusual trilinear combinations. The origin of the on-shell D=10D=10 fermionic κ\kappa symmetry of the standard Brink-Schwarz formulation is explained. The coupling to a D=10D=10 super-Maxwell background requires a new mechanism, in which the electric charge appears only on shell as an integration constant.Comment: 22pages, standard LATEX fil

    Born reciprocity and the 1/r potential

    Full text link
    Many structures in nature are invariant under the transformation (p,r)->(br,-p/b), where b is some scale factor. Born's reciprocity hypothesis affirms that this invariance extends to the entire Hamiltonian and equations of motion. We investigate this idea for atomic physics and galactic motion, where one is basically dealing with a 1/r potential and the observations are very accurate, so as to determine the scale b=mΩb = m\Omega. We find that an Ω1.5×1015\Omega \sim 1.5\times 10^{-15} Hz has essentially no effect on atomic physics but might possibly offer an explanation for galactic rotation, without invoking dark matter.Comment: 14 pages, with 4 figures, Latex, requires epsf.tex and iop style file

    Exact results for hydrogen recombination on dust grain surfaces

    Full text link
    The recombination of hydrogen in the interstellar medium, taking place on surfaces of microscopic dust grains, is an essential process in the evolution of chemical complexity in interstellar clouds. The H_2 formation process has been studied theoretically, and in recent years also by laboratory experiments. The experimental results were analyzed using a rate equation model. The parameters of the surface, that are relevant to H_2 formation, were obtained and used in order to calculate the recombination rate under interstellar conditions. However, it turned out that due to the microscopic size of the dust grains and the low density of H atoms, the rate equations may not always apply. A master equation approach that provides a good description of the H_2 formation process was proposed. It takes into account both the discrete nature of the H atoms and the fluctuations in the number of atoms on a grain. In this paper we present a comprehensive analysis of the H_2 formation process, under steady state conditions, using an exact solution of the master equation. This solution provides an exact result for the hydrogen recombination rate and its dependence on the flux, the surface temperature and the grain size. The results are compared with those obtained from the rate equations. The relevant length scales in the problem are identified and the parameter space is divided into two domains. One domain, characterized by first order kinetics, exhibits high efficiency of H_2 formation. In the other domain, characterized by second order kinetics, the efficiency of H_2 formation is low. In each of these domains we identify the range of parameters in which, the rate equations do not account correctly for the recombination rate. and the master equation is needed.Comment: 23 pages + 8 figure

    Current Understanding of Structure–Processing–Property Relationships in BaTiO₃–Bi(M)O₃ Dielectrics

    Get PDF
    As part of a continued push for high permittivity dielectrics suitable for use at elevated operating temperatures and/or large electric fields, modifications of BaTiO3 with Bi(M)O3, where M represents a net-trivalent B-site occupied by one or more species, have received a great deal of recent attention. Materials in this composition family exhibit weakly coupled relaxor behavior that is not only remarkably stable at high temperatures and under large electric fields, but is also quite similar across various identities of M. Moderate levels of Bi content (as much as 50 mol%) appear to be crucial to the stability of the dielectric response. In addition, the presence of significant Bi reduces the processing temperatures required for densification and increases the required oxygen content in processing atmospheres relative to traditional X7R-type BaTiO3-based dielectrics. Although detailed understanding of the structure–processing–property relationships in this class of materials is still in its infancy, this article reviews the current state of understanding of the mechanisms underlying the high and stable values of both relative permittivity and resistivity that are characteristic of BaTiO3-Bi(M)O3 dielectrics as well as the processing challenges and opportunities associated with these materials

    Why Don't We Have a Covariant Superstring Field Theory?

    Full text link
    This talk deals with the old problem of formulatingn a covariant quantum theory of superstrings, ``covariant'' here meaning having manifest Lorentz symmetry and supersymmetry. The advantages and disadvantages of several quantization methods are reviewed. Special emphasis is put on the approaches using twistorial variables, and the algebraic structures of these. Some unsolved problems are identified.Comment: 5 pages, Goteborg-ITP-94-24, plain te

    Ferromagnetic transition in a double-exchange system

    Full text link
    We study ferromagnetic transition in three-dimensional double-exchange model. The influence of strong spin fluctuations on conduction electrons is described in coherent potential approximation. In the framework of thermodynamic approach we construct for the system "electrons (in a disordered spin configuration) + spins" the Landau functional, from the analysis of which critical temperature of ferromagnetic transition is calculated.Comment: 4 pages, 1 eps figure, LaTeX2e, RevTeX. References added, text change

    A no-go for no-go theorems prohibiting cosmic acceleration in extra dimensional models

    Full text link
    A four-dimensional effective theory that arises as the low-energy limit of some extra-dimensional model is constrained by the higher dimensional Einstein equations. Steinhardt & Wesley use this to show that accelerated expansion in our four large dimensions can only be transient in a large class of Kaluza-Klein models that satisfy the (higher dimensional) null energy condition [1]. We point out that these no-go theorems are based on a rather ad-hoc assumption on the metric, without which no strong statements can be made.Comment: 20 page

    A New First Class Algebra, Homological Perturbation and Extension of Pure Spinor Formalism for Superstring

    Full text link
    Based on a novel first class algebra, we develop an extension of the pure spinor (PS) formalism of Berkovits, in which the PS constraints are removed. By using the homological perturbation theory in an essential way, the BRST-like charge QQ of the conventional PS formalism is promoted to a bona fide nilpotent charge Q^\hat{Q}, the cohomology of which is equivalent to the constrained cohomology of QQ. This construction requires only a minimum number (five) of additional fermionic ghost-antighost pairs and the vertex operators for the massless modes of open string are obtained in a systematic way. Furthermore, we present a simple composite "bb-ghost" field B(z)B(z) which realizes the important relation T(z)={Q^,B(z)}T(z) = \{\hat{Q}, B(z)\} , with T(z)T(z) the Virasoro operator, and apply it to facilitate the construction of the integrated vertex. The present formalism utilizes U(5) parametrization and the manifest Lorentz covariance is yet to be achieved.Comment: 38 pages, no figure. Proof of triviality of delta-homology improved and a reference adde
    corecore