1,256 research outputs found
Electron correlation energy in confined two-electron systems
Radial, angular and total correlation energies are calculated for four
two-electron systems with atomic numbers Z=0-3 confined within an impenetrable
sphere of radius R. We report accurate results for the non-relativistic,
restricted Hartree-Fock and radial limit energies over a range of confinement
radii from 0.05 - 10 a0. At small R, the correlation energies approach limiting
values that are independent of Z while at intermediate R, systems with Z > 1
exhibit a characteristic maximum in the correlation energy resulting from an
increase in the angular correlation energy which is offset by a decrease in the
radial correlation energy
Measurement of SUSY masses via cascade decays for SPS 1a
If R-parity conserving supersymmetry exists below the TeV-scale, new particles will be produced and decay in cascades at the LHC. The lightest supersymmetric particle will escape the detectors, thereby complicating the full reconstruction of the decay chains. In this paper we expand on existing methods for determining the masses of the particles in the cascade from endpoints of kinematical distributions. We perform scans in the mSUGRA parameter space to delimit the region where this method is applicable. From the examination of theoretical distributions for a wide selection of mass scenarios it is found that caution must be exerted when equating the theoretical endpoints with the experimentally obtainable ones. We provide analytic formulae for the masses in terms of the endpoints most readily available. Complications due to the composite nature of the endpoint expressions are discussed in relation to the detailed analysis of two points on the SPS 1a line. Finally we demonstrate how a Linear Collider measurement can improve dramatically on the precision of the masses obtained
Constraints on diffuse neutrino background from primordial black holes
We calculated the energy spectra and the fluxes of electron neutrino emitted
in the process of evaporation of primordial black holes (PBHs) in the early
universe. It was assumed that PBHs are formed by a blue power-law spectrum of
primordial density fluctuations. We obtained the bounds on the spectral index
of density fluctuations assuming validity of the standard picture of
gravitational collapse and using the available data of several experiments with
atmospheric and solar neutrinos. The comparison of our results with the
previous constraints (which had been obtained using diffuse photon background
data) shows that such bounds are quite sensitive to an assumed form of the
initial PBH mass function.Comment: 18 pages,(with 7 figures
Potential-density pairs for axisymmetric galaxies: the influence of scalar fields
We present a formulation for potential-density pairs to describe axisymmetric
galaxies in the Newtonian limit of scalar-tensor theories of gravity. The
scalar field is described by a modified Helmholtz equation with a source that
is coupled to the standard Poisson equation of Newtonian gravity. The net
gravitational force is given by two contributions: the standard Newtonian
potential plus a term stemming from massive scalar fields. General solutions
have been found for axisymmetric systems and the multipole expansion of the
Yukawa potential is given. In particular, we have computed potential-density
pairs of galactic disks for an exponential profile and their rotation curves.Comment: 8 pages, no figures, corrected version to the one that will appear in
Gen. Relativ. Gravit., where a small typo in eq. (13) is presen
Stripes and holes in a two-dimensional model of spinless fermions and hardcore bosons
We consider a Hubbard-like model of strongly-interacting spinless fermions
and hardcore bosons on a square lattice, such that nearest neighbor occupation
is forbidden. Stripes (lines of holes across the lattice forming antiphase
walls between ordered domains) are a favorable way to dope this system below
half-filling. The problem of a single stripe can be mapped to a spin-1/2 chain,
which allows understanding of its elementary excitations and calculation of the
stripe's effective mass for transverse vibrations. Using Lanczos exact
diagonalization, we investigate the excitation gap and dispersion of a hole on
a stripe, and the interaction of two holes. We also study the interaction of
two, three, and four stripes, finding that they repel, and the interaction
energy decays with stripe separation as if they are hardcore particles moving
in one (transverse) direction. To determine the stability of an array of
stripes against phase separation into particle-rich phase and hole-rich liquid,
we evaluate the liquid's equation of state, finding the stripe-array is not
stable for bosons but is possibly stable for fermions.Comment: 24 pages, 18 figure
Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism
We explore with self-consistent 2D F{\sc{ornax}} simulations the dependence
of the outcome of collapse on many-body corrections to neutrino-nucleon cross
sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy
nuclei, pre-collapse seed perturbations, and inelastic neutrino-electron and
neutrino-nucleon scattering. Importantly, proximity to criticality amplifies
the role of even small changes in the neutrino-matter couplings, and such
changes can together add to produce outsized effects. When close to the
critical condition the cumulative result of a few small effects (including
seeds) that individually have only modest consequence can convert an anemic
into a robust explosion, or even a dud into a blast. Such sensitivity is not
seen in one dimension and may explain the apparent heterogeneity in the
outcomes of detailed simulations performed internationally. A natural
conclusion is that the different groups collectively are closer to a realistic
understanding of the mechanism of core-collapse supernovae than might have
seemed apparent.Comment: 25 pages; 10 figure
A comparison of Finite Elements for Nonlinear Beams: The absolute nodal coordinate and geometrically exact formulations
Two of the most popular finite element formulations for solving nonlinear beams are the absolute nodal coordinate and the geometrically exact approaches. Both can be applied to problems with very large deformations and strains, but they differ substantially at the continuous and the discrete levels. In addition, implementation and run-time computational costs also vary significantly. In the current work, we summarize the main features of the two formulations, highlighting their differences and similarities, and perform numerical benchmarks to assess their accuracy and robustness. The article concludes with recommendations for the choice of one formulation over the other
Light propagation in statistically homogeneous and isotropic universes with general matter content
We derive the relationship of the redshift and the angular diameter distance
to the average expansion rate for universes which are statistically homogeneous
and isotropic and where the distribution evolves slowly, but which have
otherwise arbitrary geometry and matter content. The relevant average expansion
rate is selected by the observable redshift and the assumed symmetry properties
of the spacetime. We show why light deflection and shear remain small. We write
down the evolution equations for the average expansion rate and discuss the
validity of the dust approximation.Comment: 42 pages, no figures. v2: Corrected one detail about the angular
diameter distance and two typos. No change in result
A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1
We have carried out a high statistics (2 Billion events) search for
ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3
and Hercules X-1. Using data taken with the CASA-MIA detector over a five year
period (1990-1995), we find no evidence for steady emission from either source
at energies above 115 TeV. The derived upper limits on such emission are more
than two orders of magnitude lower than earlier claimed detections. We also
find no evidence for neutral particle or gamma-ray emission from either source
on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for
emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of
large radio flares. Unless one postulates that these sources were very active
earlier and are now dormant, the limits presented here put into question the
earlier results, and highlight the difficulties that possible future
experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published
in Physical Review
Dynamic Evolution Model of Isothermal Voids and Shocks
We explore self-similar hydrodynamic evolution of central voids embedded in
an isothermal gas of spherical symmetry under the self-gravity. More
specifically, we study voids expanding at constant radial speeds in an
isothermal gas and construct all types of possible void solutions without or
with shocks in surrounding envelopes. We examine properties of void boundaries
and outer envelopes. Voids without shocks are all bounded by overdense shells
and either inflows or outflows in the outer envelope may occur. These
solutions, referred to as type void solutions, are further
divided into subtypes and
according to their characteristic behaviours across the sonic critical line
(SCL). Void solutions with shocks in envelopes are referred to as type
voids and can have both dense and quasi-smooth edges.
Asymptotically, outflows, breezes, inflows, accretions and static outer
envelopes may all surround such type voids. Both cases of
constant and varying temperatures across isothermal shock fronts are analyzed;
they are referred to as types and
void shock solutions. We apply the `phase net matching procedure' to construct
various self-similar void solutions. We also present analysis on void
generation mechanisms and describe several astrophysical applications. By
including self-gravity, gas pressure and shocks, our isothermal self-similar
void (ISSV) model is adaptable to various astrophysical systems such as
planetary nebulae, hot bubbles and superbubbles in the interstellar medium as
well as supernova remnants.Comment: 24 pages, 13 figuers, accepted by ApS
- …
