55 research outputs found

    Multimodal freight transportation: sustainability challenges

    Get PDF
    Due to globalization in trade, the development of multimodal cargo shipments and the related transport needs have created a range of challenges. Interestingly, sustainability of multimodal freight transportation is still subject to minor consideration, on the grounds that economic interests are frequently positioned much higher than social or environmental objectives. This proposed research plan is needed to assess whether and to what extent the multimodal freight system is achieving the results in the sustainability dimensions: economic, social and environmental. Thus, it will carry out a critical appraisal of the multimodal freight transportation sector to provide an up-to-date knowledge on the sustainability challenges and the potential solutions through doctoral research. This paper structured to present a review of existing literature on freight transportation and multimodal freight transport highlighting the sustainability concerns with multimodal freight transport systems. It also highlights the gaps in knowledge with a justification on the need to address these gaps for the system to function optimally. It also covers the methodology that would be applied and the sources of data that would be reviewed to ensure the aim and objectives are clearly addressed. The paper concludes by discussing the significance of the expected findings in the light of sustainability in multimodal freight transport to the academia, policy makers and the freight transportation industry

    A novel reformulation of the Theory of Critical Distances to design notched metals against dynamic loading

    Get PDF
    In the present study the linear-elastic Theory of Critical Distances (TCD) is reformulated to make it suitable for predicting the strength of notched metallic materials subjected to dynamic loading. The accuracy and reliability of the proposed reformulation of the TCD was checked against a number of experimental results generated by testing, under different loading/strain rates, notched cylindrical samples of aluminium alloy 6063-T5, titanium alloy Ti–6Al–4V, aluminium alloy AlMg6, and an AlMn alloy. To further validate the proposed design method also different data sets taken from the literature were considered. Such an extensive validation exercise allowed us to prove that the proposed reformulation of the TCD is successful in predicting the dynamic strength of notched metallic materials, this approach proving to be capable of estimates falling within an error interval of ±20%. Such a high level of accuracy is certainly remarkable, especially in light of the fact that it was reached without the need for explicitly modelling the stress vs. strain dynamic behaviour of the investigated ductile metals

    Human cathepsin D.

    Full text link
    • 

    corecore