4,301 research outputs found

    Impact resistance of spar-shell composite fan blades

    Get PDF
    Composite spar-shell fan blades for a 1.83 meter (6 feet) diameter fan stage were fabricated and tested in a whirling arm facility to evaluate foreign object damage (FOD) resistance. The blades were made by adhesively bonding boron-epoxy shells on titanium spars and then adhesively bonding an Inconel 625 sheath on the leading edge. The rotating blades were individually tested at a tip speed of 800 feet per second. Impacting media used were gravel, rivets, bolt, nut, ice balls, simulated birds, and a real bird. Incidence angles were typical of those which might be experienced by STOL aircraft. The tests showed that blades of the design tested in this program have satisfactory impact resistance to small objects such as gravel, rivets, nuts, bolts, and two inch diameter ice balls. The blades suffered nominal damage when impacted with one-pound birds (9 to 10 ounce slice size). However, the shell was removed from the spar for a larger slice size

    Electrochemical Energy Storage Subsystems Study, Volume 2

    Get PDF
    The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models are exercised to define baseline designs and costs. Then the major design and performance parameters are each varied to determine their influence on LCC around the baseline values

    Electrochemical energy storage subsystems study, volume 1

    Get PDF
    The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models define baseline designs and costs. The major design and performance parameters are each varied to determine their influence on LCC around the baseline values

    Mudas de videiras.

    Get PDF
    Brotou um pequeno ramo de uva que plantei sem enxerto e direto na terra, mas será que ele produzirá frutos?bitstream/item/200760/1/12938-2011-p.108.pd

    Recommendations for the Health Examination Surveys in Europe

    Get PDF

    Review of Health Examination Surveys in Europe.

    Get PDF

    Generalized Berry Conjecture and mode correlations in chaotic plates

    Full text link
    We consider a modification of the Berry Conjecture for eigenmode statistics in wave-bearing systems. The eigenmode correlator is conjectured to be proportional to the imaginary part of the Green's function. The generalization is applicable not only to scalar waves in the interior of homogeneous isotropic systems where the correlator is a Bessel function, but to arbitrary points of heterogeneous systems as well. In view of recent experimental measurements, expressions for the intensity correlator in chaotic plates are derived.Comment: 5 pages, 1 figur

    Laser cooling of a nanomechanical resonator mode to its quantum ground state

    Full text link
    We show that it is possible to cool a nanomechanical resonator mode to its ground state. The proposed technique is based on resonant laser excitation of a phonon sideband of an embedded quantum dot. The strength of the sideband coupling is determined directly by the difference between the electron-phonon couplings of the initial and final states of the quantum dot optical transition. Possible applications of the technique we describe include generation of non-classical states of mechanical motion.Comment: 5 pages, 3 figures, revtex

    A Theoretical Model for the MbhσM_{\rm bh}-\sigma Relation for Supermassive Black Holes in Galaxies

    Full text link
    We construct a model for the formation of black holes within galactic bulges. The initial state is a slowly rotating isothermal sphere, characterized by effective transport speed \aeff and rotation rate Ω\Omega. The black hole mass is determined when the centrifugal radius of the collapse flow exceeds the capture radius of the central black hole. This model reproduces the observed correlation between black hole masses and galactic velocity dispersions, \mbh \approx 10^8 M_\odot (\sigma/200 \kms)^4, where \sigma = \sqrt{2} \aeff. This model also predicts the ratio \mrat of black hole mass to host mass: \mrat \approx 0.004 (\sigma/200 \kms).Comment: 9 pages, 2 figures, submitted to Astrophysical Journal Letter
    corecore