140 research outputs found

    Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes.

    Get PDF
    Background: MicroRNAs (miRNAs) in circulation have emerged as promising biomarkers. In this study, we aimed to identify a circulating miRNA signature for osteoarthritis (OA) patients and in combination with bioinformatics analysis to evaluate the utility of selected differentially expressed miRNAs in the serum as potential OA biomarkers. Methods: Serum samples were collected from 12 primary OA patients, and 12 healthy individuals were screened using the Agilent Human miRNA Microarray platform interrogating 2549 miRNAs. Receiver Operating Characteristic (ROC) curves were constructed to evaluate the diagnostic performance of the deregulated miRNAs. Expression levels of selected miRNAs were validated by quantitative real-time PCR (qRT-PCR) in all serum and in articular cartilage samples from OA patients (n = 12) and healthy individuals (n = 7). Bioinformatics analysis was used to investigate the involved pathways and target genes for the above miRNAs. Results: We identified 279 differentially expressed miRNAs in the serum of OA patients compared to controls. Two hundred and five miRNAs (73.5%) were upregulated and 74 (26.5%) downregulated. ROC analysis revealed that 77 miRNAs had area under the curve (AUC) > 0.8 and p < 0.05. Bioinformatics analysis in the 77 miRNAs revealed that their target genes were involved in multiple signaling pathways associated with OA, among which FoxO, mTOR, Wnt, pI3K/akt, TGF-β signaling pathways, ECM-receptor interaction, and fatty acid biosynthesis. qRT-PCR validation in seven selected out of the 77 miRNAs revealed 3 significantly downregulated miRNAs (hsa-miR-33b-3p, hsa-miR-671-3p, and hsa-miR-140-3p) in the serum of OA patients, which were in silico predicted to be enriched in pathways involved in metabolic processes. Target-gene analysis of hsa-miR-140-3p, hsa-miR-33b-3p, and hsa-miR-671-3p revealed that InsR and IGFR1 were common targets of all three miRNAs, highlighting their involvement in regulation of metabolic processes that contribute to OA pathology. Hsa-miR-140-3p and hsa-miR-671-3p expression levels were consistently downregulated in articular cartilage of OA patients compared to healthy individuals. Conclusions: A serum miRNA signature was established for the first time using high density resolution miR-arrays in OA patients. We identified a three-miRNA signature, hsa-miR-140-3p, hsa-miR-671-3p, and hsa-miR-33b-3p, in the serum of OA patients, predicted to regulate metabolic processes, which could serve as a potential biomarker for the evaluation of OA risk and progression.Peer reviewedFinal Published versio

    Effect of different intravenous iron preparations on lymphocyte intracellular reactive oxygen species generation and subpopulation survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infections in hemodialysis (HD) patients lead to high morbidity and mortality rates and are associated with early cardiovascular mortality, possibly related to chronic inflammation. Intravenous (IV) iron is widely administered to HD patients and has been associated with increased oxidative stress and dysfunctional cellular immunity. The purpose of this study was to examine the effect of three commercially available IV iron preparations on intracellular reactive oxygen species generation and lymphocyte subpopulation survival.</p> <p>Methods</p> <p>Peripheral blood mononuclear cells (PBMC) were isolated from healthy donor buffy coat. PBMC were cultured and incubated with 100 μg/mL of sodium ferric gluconate (SFG), iron sucrose (IS) or iron dextran (ID) for 24 hours. Cells were then probed for reactive oxygen species (ROS) with dichlorofluorescein-diacetate. In separate studies, isolated PBMCs were incubated with the 25, 50 or 100 μg/mL iron concentrations for 72 hours and then stained with fluorescein conjugated monoclonal antibodies for lymphocyte subpopulation identification. Untreated PBMCs at 24 hours and 72 hours served as controls for each experiment.</p> <p>Results</p> <p>All three IV iron preparations induced time dependent increases in intracellular ROS with SFG and IS having a greater maximal effect than ID. The CD4+ lymphocytes were most affected by IV iron exposure, with statistically significant reduction in survival after incubation with all three doses (10, 25 and 100 μg/mL) of SFG, IS and ID.</p> <p>Conclusion</p> <p>These data indicate IV iron products induce differential deleterious effects on CD4+ and CD16+ human lymphocytes cell populations that may be mediated by intracellular reactive oxygen species generation. Further studies are warranted to determine the potential clinical relevance of these findings.</p

    Impact of hypoxia on chemoresistance of mesothelioma mediated by the proton-coupled folate transporter, and preclinical activity of new anti-LDH-A compounds

    Get PDF
    BACKGROUND: Expression of proton-coupled folate transporter (PCFT) is associated with survival of mesothelioma patients treated with pemetrexed, and is reduced by hypoxia, prompting studies to elucidate their correlation. METHODS: Modulation of glycolytic gene expression was evaluated by PCR arrays in tumour cells and primary cultures growing under hypoxia, in spheroids and after PCFT silencing. Inhibitors of lactate dehydrogenase (LDH-A) were tested in vitro and in vivo. LDH-A expression was determined in tissue microarrays of radically resected malignant pleural mesothelioma (MPM, N = 33) and diffuse peritoneal mesothelioma (DMPM, N = 56) patients. RESULTS: Overexpression of hypoxia marker CAIX was associated with low PCFT expression and decreased MPM cell growth inhibition by pemetrexed. Through integration of PCR arrays in hypoxic cells and spheroids and following PCFT silencing, we identified the upregulation of LDH-A, which correlated with shorter survival of MPM and DMPM patients. Novel LDH-A inhibitors enhanced spheroid disintegration and displayed synergistic effects with pemetrexed in MPM and gemcitabine in DMPM cells. Studies with bioluminescent hypoxic orthotopic and subcutaneous DMPM athymic-mice models revealed the marked antitumour activity of the LDH-A inhibitor NHI-Glc-2, alone or combined with gemcitabine. CONCLUSIONS: This study provides novel insights into hypoxia/PCFT-dependent chemoresistance, unravelling the potential prognostic value of LDH-A, and demonstrating the preclinical activity of LDH-A inhibitors

    Proteolysis of proBDNF Is a Key Regulator in the Formation of Memory

    Get PDF
    It is essential to understand the molecular processes underlying long-term memory to provide therapeutic targets of aberrant memory that produce pathological behaviour in humans. Under conditions of recall, fully-consolidated memories can undergo reconsolidation or extinction. These retrieval-mediated memory processes may rely on distinct molecular processes. The cellular mechanisms initiating the signature molecular events are not known. Using infusions of protein synthesis inhibitors, antisense oligonucleotide targeting brain-derived neurotrophic factor (BDNF) mRNA or tPA-STOP (an inhibitor of the proteolysis of BDNF protein) into the hippocampus of the awake rat, we show that acquisition and extinction of contextual fear memory depended on the increased and decreased proteolysis of proBDNF (precursor BDNF) in the hippocampus, respectively. Conditions of retrieval that are known to initiate the reconsolidation of contextual fear memory, a BDNF-independent memory process, were not correlated with altered proBDNF cleavage. Thus, the processing of BDNF was associated with the acquisition of new information and the updating of information about a salient stimulus. Furthermore, the differential requirement for the processing of proBDNF by tPA in distinct memory processes suggest that the molecular events actively engaged to support the storage and/or the successful retrieval of memory depends on the integration of ongoing experience with past learning

    Identification of Novel Therapeutic Targets in Microdissected Clear Cell Ovarian Cancers

    Get PDF
    Clear cell ovarian cancer is an epithelial ovarian cancer histotype that is less responsive to chemotherapy and carries poorer prognosis than serous and endometrioid histotypes. Despite this, patients with these tumors are treated in a similar fashion as all other ovarian cancers. Previous genomic analysis has suggested that clear cell cancers represent a unique tumor subtype. Here we generated the first whole genomic expression profiling using epithelial component of clear cell ovarian cancers and normal ovarian surface specimens isolated by laser capture microdissection. All the arrays were analyzed using BRB ArrayTools and PathwayStudio software to identify the signaling pathways. Identified pathways validated using serous, clear cell cancer cell lines and RNAi technology. In vivo validations carried out using an orthotopic mouse model and liposomal encapsulated siRNA. Patient-derived clear cell and serous ovarian tumors were grafted under the renal capsule of NOD-SCID mice to evaluate the therapeutic potential of the identified pathway. We identified major activated pathways in clear cells involving in hypoxic cell growth, angiogenesis, and glucose metabolism not seen in other histotypes. Knockdown of key genes in these pathways sensitized clear cell ovarian cancer cell lines to hypoxia/glucose deprivation. In vivo experiments using patient derived tumors demonstrate that clear cell tumors are exquisitely sensitive to antiangiogenesis therapy (i.e. sunitinib) compared with serous tumors. We generated a histotype specific, gene signature associated with clear cell ovarian cancer which identifies important activated pathways critical for their clinicopathologic characteristics. These results provide a rational basis for a radically different treatment for ovarian clear cell patients

    ACE Inhibition and Endothelial Function: Main Findings of PERFECT, a Sub-Study of the EUROPA Trial

    Get PDF
    Background: ACE inhibition results in secondary prevention of coronary artery disease (CAD) through different mechanisms including improvement of endothelial dysfunction. The Perindopril-Function of the Endothelium in Coronary artery disease Trial (PERFECT) evaluated whether long-term administration of perindopril improves endothelial dysfunction. Methods: PERFECT is a 3-year double blind randomised placebo controlled trial to determine the effect of perindopril 8 mg once daily on brachial artery endothelial function in patients with stable CAD without clinical heart failure. Endothelial function in response to ischaemia was assessed using ultrasound. Primary endpoint was difference in flow-mediated vasodilatation (FMD) assessed at 36 months. Results: In 20 centers, 333 patients randomly received perindopril or matching placebo. Ischemia-induced FMD was 2.7% (SD 2.6). In the perindopril group FMD went from 2.6% at baseline to 3.3% at 36 months and in the placebo group from 2.8 to 3.0%. Change in FMD after 36 month treatment was 0.55% (95% confidence interval −0.36, 1.47; p = 0.23) higher in perindopril than in placebo group. The rate of change in FMD per 6 months was 0.14% (SE 0.05, p = 0.02) in perindopril and 0.02% (SE 0.05, p = 0.74) in placebo group (0.12% difference in rate of change p = 0.07). Conclusion: Perindopril resulted in a modest, albeit not statistically significant, improvement in FMD

    Glycobiology of cell death: when glycans and lectins govern cell fate

    Get PDF
    Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs. Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during physiologic and pathologic settings.Fil: Lichtenstein, Rachel. Ben-Gurion University of the Negev. Faculty of Engineering. Department of Biotechnology Engineering; IsraelFil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Departamento de Quimica Biologica; Argentin

    Observation and branching fraction measurement of the decay Ξb- → Λ0 bπ -

    Get PDF
    corecore