8 research outputs found

    Global Distribution of Outbreaks of Water-Associated Infectious Diseases

    Get PDF
    Water is essential for maintaining life on Earth but can also serve as a media for many pathogenic organisms, causing a high disease burden globally. However, how the global distribution of water-associated infectious pathogens/diseases looks like and how such distribution is related to possible social and environmental factors remain largely unknown. In this study, we compiled a database on distribution, biology, and epidemiology of water-associated infectious diseases and collected data on population density, annual accumulated temperature, surface water areas, average annual precipitation, and per capita GDP at the global scale. From the database we extracted reported outbreak events from 1991 to 2008 and developed models to explore the association between the distribution of these outbreaks and social and environmental factors. A total of1,428 outbreaks had been reported and this number only reflected ‘the tip of the iceberg’ of the much bigger problem. We found that the outbreaks of water-associated infectious diseases are significantly correlated with social and environmental factors and that all regions are affected disproportionately by different categories of diseases. Relative risk maps are generated to show ‘hotspots’ of risks for different diseases. Despite certain limitations, the findings may be instrumental for future studies and prioritizing health resources

    Development of environmental tools for anopheline larval control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria mosquitoes spend a considerable part of their life in the aquatic stage, rendering them vulnerable to interventions directed to aquatic habitats. Recent successes of mosquito larval control have been reported using environmental and biological tools. Here, we report the effects of shading by plants and biological control agents on the development and survival of anopheline and culicine mosquito larvae in man-made natural habitats in western Kenya. Trials consisted of environmental manipulation using locally available plants, the introduction of predatory fish and/or the use of <it>Bacillus thuringiensis </it>var. <it>israelensis </it>(<it>Bti</it>) in various combinations.</p> <p>Results</p> <p>Man-made habitats provided with shade from different crop species produced significantly fewer larvae than those without shade especially for the malaria vector <it>Anopheles gambiae</it>. Larval control of the African malaria mosquito <it>An. gambiae </it>and other mosquito species was effective in habitats where both predatory fish and <it>Bti </it>were applied, than where the two biological control agents were administered independently.</p> <p>Conclusion</p> <p>We conclude that integration of environmental management techniques using shade-providing plants and predatory fish and/or <it>Bti </it>are effective and sustainable tools for the control of malaria and other mosquito-borne disease vectors.</p

    Pattern Of Blood Pressure, Cd4+ T Cells Count And Some Cardiac Enzymes In Hiv Seropositive Subjects

    No full text
    HIV/AIDS infection is a global pandemic, which is becoming a security problem in Sub-Saharan Africa, Nigeria inclusive. The present study was designed to investigate the pattern of blood pressure, CD4 + T cells count and some cardiac enzymes in HIV seropositive subjects in Nnewi and its environment because HIV infection results into a lot of clinical manifestations such as cardiovascular disorders. A total number of one hundred and fifty seropositive subjects on and without antiretroviral therapy ARVT were investigated. The results showed that total creatine kinase (CK), CK-MB and total aspartate aminotransferases (AST) were significantly increased (

    Nigeria Anopheles vector database: an overview of 100 years' research.

    Get PDF
    Anopheles mosquitoes are important vectors of malaria and lymphatic filariasis (LF), which are major public health diseases in Nigeria. Malaria is caused by infection with a protozoan parasite of the genus Plasmodium and LF by the parasitic worm Wuchereria bancrofti. Updating our knowledge of the Anopheles species is vital in planning and implementing evidence based vector control programs. To present a comprehensive report on the spatial distribution and composition of these vectors, all published data available were collated into a database. Details recorded for each source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, morphological and molecular species identification methods, insecticide resistance status, including evidence of the kdr allele, and P. falciparum sporozoite rate and W. bancrofti microfilaria prevalence. This collation resulted in a total of 110 publications, encompassing 484,747 Anopheles mosquitoes in 632 spatially unique descriptions at 142 georeferenced locations being identified across Nigeria from 1900 to 2010. Overall, the highest number of vector species reported included An. gambiae complex (65.2%), An. funestus complex (17.3%), An. gambiae s.s. (6.5%). An. arabiensis (5.0%) and An. funestus s.s. (2.5%), with the molecular forms An. gambiae M and S identified at 120 locations. A variety of sampling/collection and species identification methods were used with an increase in molecular techniques in recent decades. Insecticide resistance to pyrethroids and organochlorines was found in the main Anopheles species across 45 locations. Presence of P. falciparum and W. bancrofti varied between species with the highest sporozoite rates found in An. gambiae s.s, An. funestus s.s. and An. moucheti, and the highest microfilaria prevalence in An. gambiae s.l., An. arabiensis, and An. gambiae s.s. This comprehensive geo-referenced database provides an essential baseline on Anopheles vectors and will be an important resource for malaria and LF vector control programmes in Nigeria

    Nigeria Anopheles Vector Database: An Overview of 100 Years' Research

    No full text
    corecore