71 research outputs found

    Chronic Hepatitis C Treatment in Patients with Drug Injection History: Findings of the INTEGRATE Prospective, Observational Study.

    Get PDF
    INTRODUCTION: People who inject drugs represent an under-treated chronic hepatitis C virus (HCV)-infected patient population. METHODS: INTEGRATE was a prospective, observational study investigating the effectiveness, safety, and adherence in routine clinical practice to telaprevir in combination with peg-interferon and ribavirin (Peg-IFN/RBV) in patients with history of injecting drug use chronically infected with genotype 1 HCV. RESULTS: A total of 46 patients were enrolled and included in the intent-to-treat (ITT) population. Among heroin and/or cocaine users (n = 37; 80%), 22% reported use in the past month; 74% (34/46) of patients were on opioid substitution therapy in the pre-treatment phase, and 43% (20/46) discontinued HCV treatment prematurely. Sustained virologic response rate was 54% (25/46) in the ITT population and 74% (25/34) in the per protocol (evaluable-for-effectiveness) population. The main reason for failure in the ITT analysis was loss to follow-up (n = 8; 17%). Adverse events occurred in 91% (42/46) of patients. Mean patient-reported adherence to study drugs was >89% at Week 4, Week 12 and end of treatment. CONCLUSION: Despite a high rate of treatment discontinuation (including loss to follow-up), self-reported adherence to treatment was good and virologic cure rates were similar to those reported in large real-world cohorts. Our findings suggest that people with a history of injecting drug use should be considered for treatment of chronic HCV infection, and highlight the need for improvements in patient support to boost retention in care and, in turn, help to prevent reinfection and transmission. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov identifier, NCT01980290. FUNDING: Janssen Pharmaceuticals

    Chemically-Induced RAT Mesenchymal Stem Cells Adopt Molecular Properties of Neuronal-Like Cells but Do Not Have Basic Neuronal Functional Properties

    Get PDF
    Induction of adult rat bone marrow mesenchymal stem cells (MSC) by means of chemical compounds (β-mercaptoethanol, dimethyl sulfoxide and butylated hydroxyanizole) has been proposed to lead to neuronal transdifferentiation, and this protocol has been broadly used by several laboratories worldwide. Only a few hours of MSC chemical induction using this protocol is sufficient for the acquisition of neuronal-like morphology and neuronal protein expression. However, given that cell death is abundant, we hypothesize that, rather than true neuronal differentiation, this particular protocol leads to cellular toxic effects. We confirm that the induced cells with neuronal-like morphology positively stained for NF-200, S100, β-tubulin III, NSE and MAP-2 proteins. However, the morphological and molecular changes after chemical induction are also associated with an increase in the apoptosis of over 50% of the plated cells after 24 h. Moreover, increased intracellular cysteine after treatment indicates an impairment of redox circuitry during chemical induction, and in vitro electrophysiological recordings (patch-clamp) of the chemically induced MSC did not indicate neuronal properties as these cells do not exhibit Na+ or K+ currents and do not fire action potentials. Our findings suggest that a disruption of redox circuitry plays an important role in this specific chemical induction protocol, which might result in cytoskeletal alterations and loss of functional ion-gated channels followed by cell death. Despite the neuronal-like morphology and neural protein expression, induced rat bone marrow MSC do not have basic functional neuronal properties, although it is still plausible that other methods of induction and/or sources of MSC can achieve a successful neuronal differentiation in vitro

    Geographic Visualization in Archaeology

    Get PDF
    Archaeologists are often considered frontrunners in employing spatial approaches within the social sciences and humanities, including geospatial technologies such as geographic information systems (GIS) that are now routinely used in archaeology. Since the late 1980s, GIS has mainly been used to support data collection and management as well as spatial analysis and modeling. While fruitful, these efforts have arguably neglected the potential contribution of advanced visualization methods to the generation of broader archaeological knowledge. This paper reviews the use of GIS in archaeology from a geographic visualization (geovisual) perspective and examines how these methods can broaden the scope of archaeological research in an era of more user-friendly cyber-infrastructures. Like most computational databases, GIS do not easily support temporal data. This limitation is particularly problematic in archaeology because processes and events are best understood in space and time. To deal with such shortcomings in existing tools, archaeologists often end up having to reduce the diversity and complexity of archaeological phenomena. Recent developments in geographic visualization begin to address some of these issues, and are pertinent in the globalized world as archaeologists amass vast new bodies of geo-referenced information and work towards integrating them with traditional archaeological data. Greater effort in developing geovisualization and geovisual analytics appropriate for archaeological data can create opportunities to visualize, navigate and assess different sources of information within the larger archaeological community, thus enhancing possibilities for collaborative research and new forms of critical inquiry
    • …
    corecore