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Abstract
Targeted attacks on IT systems are a rising threat to the confidentiality of sensitive data and the availability of critical systems.
The emergence of Advanced Persistent Threats (APTs) made it paramount to fully understand the particulars of such attacks
in order to improve or devise effective defense mechanisms. Grammar inference paired with visual analytics (VA) techniques
offers a powerful foundation for the automated extraction of behavioral patterns from sequential event traces. To facilitate the
interpretation and analysis of APTs, we present SEQUIN, a grammar inference system based on the Sequitur compression
algorithm that constructs a context-free grammar (CFG) from string-based input data. In addition to recursive rule extraction,
we expanded the procedure through automated assessment routines capable of dealing with multiple input sources and types.
This automated assessment enables the accurate identification of interesting frequent or anomalous patterns in sequential
corpora of arbitrary quantity and origin. On the formal side, we extended the CFG with attributes that help describe the
extracted (malicious) actions. Discovery-focused pattern visualization of the output is provided by our dedicated KAMAS
VA prototype.

Keywords Malware analysis · System behavior · Attribute grammar · Knowledge generation · Visual analytics

1 Introduction

IT systems are threatened by a growing number of cyber-
attacks. With the emergence of Advanced Persistent Threats
(APTs), the focus shifted from off-the-shelf malware to
attacks that are tailored to one specific entity. These targeted
threats are driven by varying motivations, such as espionage
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or high-profile sabotage, and often cause significantly more
damage.

APTs are typically conducted by dedicated groups within
organized crime, industry, or nation state intelligence and
increasingly affect less prominent targets as well. In 2013
alone, “economic espionage and theft of trade secrets cost
the American economy more than $19 billion” [35]. 60% of
espionage attacks now target small and medium businesses
whereas each reported data breach exposes over a million
identities on average [51]. The retail, healthcare, and finance
sectors find themselves in the crosshairs most often.

WhileAPTs utilizemalware likemost other,more conven-
tional attacks, their level of complexity and sophistication is
usually much higher. This is problematic especially since
defensive measures offered by security vendors typically
employ the same signature-based detection approaches that
have been used for years. The major drawback of these sys-
tems is that the binary patterns required for detection are
unlikely to exist at the time of attack, since most APTs
are tailored to one specific target and often utilize zero-day
exploits [7,48]. In addition, meta- and polymorphic tech-
niques, as well as packers and encryption routines may throw
off signature-based systems while the multi-stage nature of
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APTsmakes it generally difficult to interpret findingswithout
additional context [18].

This increased complexity makes it necessary to explore
novel techniques for threat intelligence and malicious activ-
ity detection on multiple layers. Behavior-based approaches
[27] are a promising means to identify and understand ille-
gal actions. Despite the stealth mechanisms employed, the
attacker will sooner or later execute his or her action on tar-
get – be it data theft, sabotage, or other fraudulent activity.
Behavior patters and anomalies signifying a deviation from
a known baseline can then be used to detect such a threat.

However, both pattern and anomaly detection systems
usually suffer from a lack of semantic interpretation; the
so-called semantic gap, the hard-to-bridge difference in syn-
tactic event information and actual attack semantics, remains
an issue. Patterns of binary appearance or execution behavior
are often manually assigned to represent analyst knowledge,
while anomaly detection systems do not usually attempt to
explain the identified deviations. This makes potential vic-
tims vulnerable to unknown attacks and does little to further
the exploration of meaning and intent behind the actions of
a malicious actor.

Successfully discoveringpotentially harmful systembehav-
ior boils down to three major problem domains: i) the
automated generation of patterns that contribute to detect-
ing and understanding complexmulti-stage attacks, ii) attack
semantics, and iii) the holistic view on targeted attacks and
their many properties. Arguably, a powerful formal defini-
tion of malicious behavior is the foundation for addressing
most of these aspects.

In this article, which is an extended and improved version
of [29], we propose a novel IT system behavior inference and
classification methodology based on the Sequitur algorithm
[37], which we formalize through a context-free grammar
(CFG) extended by semantic attributes (attribute grammar).
The approach combines a condensed formal definition with
the generation of knowledge linked to the information secu-
rity and malware analysis domains. Instead of manually
defining the many terminals and production rules that the
description of a behavior trace would require, we automate
the process through an extension of Sequitur that is fully
capable of determining and evaluating significant rules. This,
together with our output visualization and analytics system,
eliminates the analysts’ need to define fixed patterns describ-
ing harmful or benign behavior.

Specifically, we contribute by:

– Defining an attribute grammar capable of depicting
sequential behaviorwhile retaining information about the
triggering process and its parameters,

– Developing a grammar inference framework based on
the Sequitur algorithm capable of performing input data

compression and anomaly detection on arbitrary system
traces,

– Expanding this approach to a knowledge discovery sys-
tem supporting automated evaluation and extraction
of potentially interesting patterns through our novel
KAMAS visualization tool.

The remainder of this paper is structured as follows: In
Section 2, similar works in the area of security-related infer-
ence are reviewed. In Section 3, the specifics of grammar
inference and available algorithms are discussed.We further-
more introduce our input event data as well as the developed
attribute grammar for describing (malicious) system activ-
ity, and present our inference algorithm of choice. Applied
grammar inference and data analysis procedures are detailed
in Section 4. Our implementation, which includes a visual
knowledge extraction prototype (Sections 5 and 7), as well
as several evaluated applications of the approach (Section 6)
conclude the article.

2 Related work

In light of the large number of operating systems and pro-
gramming languages currently available, a universal means
of abstraction and classification of malicious behavior into
a more generic representation is paramount. [22] present a
detection system based on attribute grammars, where syn-
tactic rules describe possible combinations of operations
constituting certain behavior, while semantic rules control
the data flow between events and assign general meaning to
a sequence. Jacob et al’s system is intended as formal foun-
dation for developing robust intrusion andmalware detection
automata. On the modeling side, Filiol et al. [18] propose a
generalized model for malware recognition which consid-
ers both sequence-based and behavior-based detection. An
evaluation methodology for behavioral engines of existing
products is proposed. The major difference to SEQUIN is
the system’s reliance on manually defined behavioral rules.
Jacob et al’s approach focuses on specified duplication and
propagation behavior of investigated PE and VBA samples.
Close to 20 Windows native API calls are directly mapped
to interaction classes (create, read, write, etc.) and object
types such as file, registry, or network operations. SEQUIN’s
grammar inference automates this process, but relies on an
effective naming schema (see 4.4) to retain the semantic link.

In general, the discovery of program behavior is key to
understanding benign and malicious software. Zhao et al.
[62] present a semi-automatic graph grammar approach to
retrieving the hierarchical structure of an application’s activ-
ity. This is achieved by mining recurring behavioral patterns
from execution traces using VEGGIE with SubdueGL [4,5],
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a Minimum Description Length (MDL)-based compression
algorithm. The inferred graph grammar and a syntactic
parse tree visually represent reused structures found. Unlike
SEQUIN, Zhao et al.’s semi-automated approach uses amore
computationally complex context-sensitive grammar to iden-
tify common call subgraphs, which are ultimately used in
code verification scenarios.

Joo and Chellappa [24] introduce a method for represent-
ing and recognizing specific event anomalies in a video by
using attribute grammars. This limited domain makes it pos-
sible to model most of the events expected to occur and to
define anomalies that do not fit the model. Matches are rep-
resented by degree of certainty expressed as a probability.
While Joo and Chellappa’s and our system share the formal
foundation, they differ significantly in inference capabilities
and automation.

Thompson and Flynn [53] use a similar algorithm to
detect and identify the polymorphic instances of a given
malware. The approach represents program structure as a
context-free grammar, and compares grammars by check-
ing for homomorphism between them. The system makes
it possible to identify variants of software by abstracting
the control flow of the code. Non-structural elements are
removed and the complexity of code quantified by count-
ing the number of remaining elements within the function.
For comparison, the resulting grammar is serialized (sim-
ilar to SEQUIN’s zero rule) and checked against another
string. Inference mechanisms or CFG attributes for function
arguments are not employed. Thompson and Flynn’s purely
theoretical approach does not specify concrete algorithms or
evaluation scenarios.

On the more traditional anomaly detection side, Creech
and Hu [12] introduce a host-based detection method that
uses discontiguous system call patterns. The authors use a
context-free grammar to describe (but not infer) benign and
malicious call traces. Several decision engines were tested
and compared in the paper, making it a good starting point
for the selection of learning algorithms applicable to system
call sequences.

In a patent submitted by Eiland et al. [17], the authors
describe an intrusion masquerade detection system that
includes a grammar inference engine based on MDL com-
pression. The compression algorithm is applied to sets of
input data to build user-specific grammars. The use of intru-
sion masquerade is ultimately based on the determined
distance between template and observed algorithmic mini-
mum sufficient statistic.

Visualization is a predominant theme in this field. With
GrammarViz, Senin et al. [45] introduce a grammar min-
ing and visualization tool based on CFG induction. While
GrammarViz does not specifically consider attributes or
malicious software scenarios in general, it describes a prac-
tical approach to manually analyzing time series data. In

a more recent paper, Senin et al. [46] expand on the con-
cept of algorithmic incompressibility for anomaly detection
and present practical examples using spatial trajectory data.
Senin et al.’s Sequitur-based system heavily relies on the
ratio between rules and terminals for identifying anomalies.
Unlike SEQUIN, the employed visualization tool does not
fully support internal pattern extraction and classification
while primarily depicting time series charts.

Specific grammar inference algorithms considered during
the design stages of SEQUIN are introduced in Section 3.1
below.

3 Preliminaries

In this chapter, we introduce the grammar inference back-
ground of our solution and specify type of system event data
used as the foundation of semantic pattern analysis. Sequitur,
as our compression algorithm of choice, is used to deter-
mine patterns of interest. Furthermore, a formal definition of
the information used is presented in the form of an attribute
grammar.

3.1 Grammar inference

Grammar inference is the process of automatically learn-
ing a grammar by examining the sentences of an unknown
language [50]. In the IT sector, grammar inference is pri-
marily used for pattern recognition, computational biology,
natural language processing, language design programming,
data mining, and machine learning. The effectiveness of
grammar inference is influenced by the language class and
by the information available about the target language. To
raise the effectiveness of grammar inference, a combination
of learning modules and language classes are used. Gram-
mar inference has been proven to be a feasible approach to
anomaly detection, since “algorithmic incompressibility is a
necessary and sufficient condition for randomness” [34]. We
use grammar inference as key component in the process of
compressing a sequential trace for extracting relevant behav-
ioral patterns.

The main issues of grammar inference are over-
specialization and over-generalization. Over-specialization
(over-fitting) describes the problem when the inference pro-
cess produces a grammar whose language is smaller than
the unknown target language. This is typically countered
by defining an appropriate validation set from the avail-
able data and by measuring the performance on this data
after each training example has been processed [15]. Over-
generalization occurs when the inference process produces
a grammar whose language is larger than the unknown lan-
guage. The use of negligible items results in an unnecessarily
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Table 1 Grammar inference
algorithms and applications by
category

supervised semi-supervised unsupervised

statistical Co-training [49] Self-training [32] ADIOS [47]

evolutionary GA-based [42] LAgts [8]

heuristic ALLiS [13] Inductive CYK [36]

ABL [54]

MDL e-GRIDS [38]

CDC [10]

VEGGIE [4,5]

Eiland et al. [17]

greedy search ADIOS

CDC

Incremental parsing [3,44]

Sequitur [37]

GraphViz [45,46]

clustering EMILE [1] CDC

large grammar. To limit the impact of over-generalization, it
is recommended to also use a set of negative examples.

There are various computational techniques suitable for
grammar inference.DUlizia et al. [15] surveyed various algo-
rithms and categorized them into six groups:

– Statisticalmethods use probability distribution in a class
ofmodels derived fromempirical data generally provided
by a large body of text. Applications include self-training
[32] and co-training [49].ADIOS [47] also uses statistical
information to derive regularities from sentences.

– Evolutionary computing techniques, often used in
computational biology, regularly update (evolve) the ini-
tial model or grammar. Each new iteration is produced by
removing less desired solutions. GA-based approaches
and e.g. LAgts [8] both use genetic algorithms to elim-
inate unnecessary non-terminal symbols and production
rules from the grammar.

– Heuristic methods generate training examples of sen-
tences. In grammar inference, ALLiS [13] uses heuristics
to reduce the number of similar rules as well as for select-
ing rules that have the most content. ABL [54] finds,
with the help of heuristics, the longest common sequence
shared between sentences.

– Minimum description length (MDL) [40] assumes that
the simplest, most compact representation of data is its
best and most probable depiction. The principle finds its
primary application in data reduction, where “any regu-
larity in a given set of data can be used to compress the
data” [20]. Examples include CDC [10] and e-GRIDS
[38].

– Greedy search algorithms make decisions based on
their internal logic which may lead to the creation,
removal or fusion of rules. For example, Sequitur [37]

recursively replaces same-character sequences with new
production rules. It produces a grammar that reflects rep-
etitions and thereby infers the hierarchical structure of
the grammar. ADIOS [47] also applies a greedy learning
algorithm to its graph representation of sentences.

– Clustering techniques require a starting grammar that
contains all possible sentences. They subsequently clus-
ter syntactic units until the grammar has been con-
structed. For example, EMILE [1] clusters expressions
that occur in the same context, while CDC [10] creates
sets of sequences within a context before selecting clus-
ters that satisfy the MDL principle (see above).

Grammar inference algorithms are further classified by
their learning approach [15]. Refer to Table 1 for an overview
of the above-mentioned systems, amongothers. In subsection
3.2 below, we further discuss the choice of utilizing a greedy,
unsupervised inference approach for our prototype.

3.2 Algorithm selection

Wehave identified three prerequisites for the successful iden-
tification and extraction of interesting behavior from a trace:

– Unsupervised learning – The learning module used for
generating knowledge from malicious system behavior
must be unassisted. Human intervention in the decision
of whether a grammar is valid or not would contradict
the automation requirements set by most analysts.

– Context-free grammar (CFG)–Acompromise between
a regular and a context-sensitive grammar, CFGs offer a
good balance between ease of parsing and computational
efficiency. The language created by a CFG can be recog-
nized in O(n3) time, which will prove helpful in future
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parsing efforts. This selection prerequisite was comple-
mented by the decision to use an attribute grammar for
formal representation (see 3.3).

– Loss-less operation – It is vital that the algorithm
employed does not change the order or immutability of
events, since both is likely to have an impact on the
semantics of a behavioral sequence.

After surveying numerous algorithms such as the ones
listed in Section 3.1 and Table 1, we decided against using
an approach that uses equivalence classes in its vocabulary
(like ADIOS [47]). While this feature might be interesting
for studying mimicry attacks or the use of equivalent API
functions at a later point, the first prototype needed to be
precise and deterministic in its inference process in order to
enable a more expressive evaluation of the general approach.
The choice fell on Sequitur.

3.2.1 Sequitur

Sequitur is a greedy compression algorithm that creates a
hierarchical structure (CFG) from a sequence of discrete
symbols by recursively replacing repeated phrases with a
grammatical rule [37]. The output is a representation of the
original sequence, which effectively results in the creation of
a context-free grammar. The algorithm creates this represen-
tation through two essential properties, which are called rule
utility and bigram uniqueness. Rule utility checks if a rule
occurs at least twice in the grammar, while bigram unique-
ness observes if a bigram occurs only once. A bigram in this
context describes two adjacent symbols or terms. Assuming
we have a string abcdbcabcd, the first bigram would be
ab, followed by a second bigram bc, and so forth. See Table
2 for a complete example of the process.

Sequitur is linear in space and time. In terms of data com-
pression, the algorithm can outperform other designs that
achieve data reduction by factoring out repetition. It is almost
as performant as designs that compress data based on prob-
abilistic predictions [37].

See Section 6.1 for an evaluation of processing time
and RAM requirements of our adapted implementation.
Generally, the system introduced in this paper not only
applies the Sequitur algorithm, but also statistically evaluates
the inferred grammar. Furthermore, it automatically high-
lights rules describing potentially relevant behavior, enabling
anomaly or similarity detection (see 6.2).

3.3 Formal definition

To enable the conversion of any kind of trace into an appli-
cable ruleset for behavioral classification, it is necessary to
formally define relevant (malicious) actions through distinct

Table 2 Operation of Sequitur after Nevill-Manning and Witten [37]).
Property application is italicized

Sym String Grammar Remarks

1 a S → a

2 ab S → ab

3 abc S → abc

4 abcd S → abcd

5 abcdb S → abcdb

6 abcdbc S → abcdbc bc appears 2x

S → aAdA bigram uniq.

A → bc

7 abcdbca S → aAdAa

A → bc

8 abcdbcab S → aAdAab

A → bc

9 abcdbcabc S → aAdAabc bc reappears

A → bc

S → aAdAaA bigram uniq.

A → bc aA appears 2x

S → BdAB bigram uniq.

A → bc

B → aA

10 abcdbcabcd S → BdABd Bd appears 2x

A → bc

B → aA

S → CAC bigram uniq.

A → bc B used only 1x

B → aA

C → Bd

S → CAC rule utility

A → bc

C → aAd

patterns that can be integrated into a grammatical hierarchy.
Unlikemany other solutions (see 2), we do notmanuallymap
system activity to concrete events but use Sequitur-enabled
inference to automatically determine likely rules.

For this purpose, our system uses a context-free grammar
extended by attributes, known as attribute grammar [2]. This
decision followed an in-depth review of several grammars
and languages, including graph grammars [6], state transition
graphs based on NLC [41], trace languages [21], and the
aforementioned attribute grammars.

Graph grammars (also known as graph rewriting systems)
were identified as the main competitor to our final specifica-
tion. Following the notation introduced by Benteler [6], we
define a graph grammar as GG = (N , T ∪ �, P, S), where
node labels n ∈ N are non-terminals and t ∈ T are termi-
nals, while the respective edge labels e are part of alphabet
�. S ∈ N describes the start axiom whereas a production
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p ∈ P is part of the set of production rules P = (L, R,C),
which describe the one-node graph L ∈ p that replaces graph
R ∈ p using specific embedding rules C ∈ p. The two
main issues with graph grammars are the inflexibility of the
edge labels, which, unlike the attributes in attribute gram-
mars, are typically limited to one element e ∈ �, as well
as the inherent computational complexity of graph rewriting
operations/embedding rules: most algorithms require cubic
or greater time to complete. Since our system is intended to
be used as compression tool for simplified graph data (see
6.1), the performance factor was relevant.

In summary, the reason for our choice was grounded in
the fact that semantically interesting connections between
system events are often expressed by several parameters;
parameters, that can be aptly modeled by the attributes of
a context-free grammar. Performance and the availability of
parsing tools also factored into the decision.

The inferred patterns and, by extension, the full attribute
grammar as per our specification, can be defined as follows:

Let AG = (G, A, R, V ) be an attribute grammar, where:

– G = (N , T , P, S) is a context-free grammar

– N ... Set of non-terminal symbols (variables)
– T ... Set of terminal symbols (alphabet)
– P ... Production rules
– S... Start symbol

– A is a finite set of attributes
– R is a finite set of attribution rules (semantic rules)
– V is a finite set of values assigned to an attribute

Every symbol X ∈ (N ∪ T ) is assigned a finite set of
attributes AX . The attribute a ∈ AX is denoted X .a. Every
attribute a ∈ AX also has a set of values V (X .a). Typically,
an attribute a of symbol X ∈ (N ∪ T ) that is e.g. assigned
the value "0" is denominated as X .a = 0.

Our methodology uses attributes to store parameters of
system events, such as the names of particular files that are
being accessed or IP addresses that are being contacted in
the course of a network operation. Attributes are also used
to retain the connection to the invoking process of an event.
In our case, attributes are used to e.g. represent the name of
a file being created and the name of the process triggering
that particular operation (see Sections 3.4 and 5.1 for more
examples).

Two frequently used attributes are a1 = X .tr igger_name
and a2 = X .element_name. The value vi ∈ V (X .a1) iden-
tifies the actual name of the observed process responsible
for triggering the individual event X ∈ (N ∪ T ). Value
v j ∈ V (X .a2) denotes the process or file system element
the process interacted with.

Raw system events (see 3.4) captured by our monitoring
agent are processed by Sequitur, which infers a full gram-

mar in accordance to above definitions. Our system is able
to depict an arbitrary number of input traces with several
attributes a ∈ A. The resulting grammar enables further
parsing and semantic analysis. SeeSection 4.2 formore infor-
mation about the inference process.

3.4 Event data

SEQUIN is based on event traces defined as descriptions
of operating system kernel behavior invoked by applica-
tions and, by extension, a legitimate or illegitimate user.
These events are abstractions of raw system and API calls
that yield information about the general behavior of a
sample [56]. Raw calls may include wrapper functions
(e.g. CreateProcess) that offer a simple interface to
the application programmer, or native system calls (e.g.
NtCreateProcess) that represent the underlying OS or
kernel support functions. In the context of SEQUIN, event
data is collected directly from the Windows kernel. We
employ a driver-based monitoring agent [31] designed to
collect and forward a number of events to a database server.
This gives us unimpeded access to events depicting oper-
ations related to process and thread control, image loads,
filemanagement, registrymodification, network socket inter-
action, and more. For example, a shell event that creates a
new text file on a system may be simply denoted as a triple
explorer.exe,file-create,document.txt.

An alternative notation allows us to also specify each
event as a graph element G = (U , V , E), where U and
V are nodes and E is the respective edge. In one of
our own applications (see Section 6.1), the edge label is
used as basis for minimal cost calculation of same-size
star structures. Here, the above event would consist of the
triple explorer.exe,0.75,file-document.txt,
whereby 0.75 is the edge label value currently associated
with ‘create’ operations in a file context. Regardless of for-
mat, Sequitur still transforms the supplied input to sequences
of strings during processing.

Additional information captured in the background
includes various process and thread ID information required
to uniquely identify an event within a system session. To
maintain event chronology, each individual activity is time-
stamped and can be linked to a specific process or thread
through their respective ID. This allows us to construct both
process and full system traces that consider process and
thread context, and reduce the impact of multi-threading
and mimicry attacks while making it possible to determine
specific dependencies between processes or general events.
Concatenated into a full system trace, the resulting sequence
describing the monitored session is assembled without run-
away entries (see Fig. 1) interrupting the process flow. These
smart traces are the basis for all further processing.
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Fig. 1 Runaway events in a context-unaware trace. The ‘smart trace’
approach reorders events to maintain their process and thread context

Specifically, there we use two methods for assembling
smart traces: The first approach reorders events to retain
chronology within the context of each process and thread.
New processes launched or threads spawned are appended
after the current process or thread terminates. This trade-
off sacrifices inter-contextual precision for a high accuracy
within process/thread bounds (see Section 8 for further dis-
cussion). The second approach adds thread ID information
to graph element U (or the first tuple in general), allowing
for later filtering of undesired events.

Refer to [31] for more information about the smart trace
format. For the evaluation detailed in this paper, we primar-
ily utilized method 1. The example in Section 5.1 has been
simplified and retains its original event order.

4 Inference and analysis process

4.1 Preprocessing

Before Sequitur can be used on log files, behavioral traces
or other, sequential reports describing the activity of poten-
tially malicious programs, the traces need to be reduced to
their core components. In this normalization stage we have
the choice to either strip away all attributes, or to retain them
in an abstracted fashion as part of the set of terminals. As we
want to construct a full, semantics-aware attribute grammar,
most information is typically kept. We only reduce volatile
information such as (user) IDs, memory addresses, and reg-
istry paths to a more manageable set of terminals. Names of
known system processes and libraries are not modified in any
way while unknown binaries and modules (which are pos-
sibly randomly named) are represented by extension-aware
placeholders (e.g. 1.txt or 2.exe).

In order to compare the impact of different levels of detail
and granularity, we defined a total of three input formats. A

full example input and output scenario is discussed in Section
5.1.

– Verbose – This trace format uses full, attribute-enabled
events as individual words of the corpus. In verbose
mode, the input data is transformed into the follow-
ing format: triggering-process,operation,
element-name,which translates tovi ∈ V (X .a1),tx ∈
T ,v j ∈ V (X .a2). For example, a specific file creation
operation triggered by the known explorer.exe pro-
cess would be preprocessed into the following textual
input format: explorer.exe,file-create,1.
txt.

– Reduced – In this preprocessing mode, we omit attribute
a2 to generate a quick view of the high-level activ-
ity exhibited by the processes under scrutiny. Here,
v j is not processed, resulting in a reduced format of
triggering-process,operation, depicted as
e.g. explorer.exe,file-create.

– Granular – The goal in granular mode is to investi-
gate operations not as single word, but as elementary
components. Each of the elements processed in ver-
bose mode is treated by Sequitur as one terminal of
the bigram. To maintain a level of separation between
event triples, a forth item denoting the start of a new
event is prepended before each vi . This results in
the following input (items delimited by semicolon):
<start>;triggering-process;operation;
element-name.

4.2 Rule extraction

Since Sequitur only takes a single input file per default, we
added additional functionality to the algorithm in order to
retain information of origin and to enablemulti-file inference
with various evaluation subroutines. This way, SEQUIN’s
grammar inference can be applied to several files at once
without having to concatenate the input in advance. Specifi-
cally, we altered Sequitur to be capable of constructing rules
across file boundaries denoted by a unique separator, which
is ignored by the inference engine. This ultimately enables
comparative analyses of larger, disconnected data sets that do
not necessarily share repeating behaviorwithin a single trace,
which, under normal circumstances, is required for the infer-
ence process to trigger. Themain stages of the rule extraction
process are the following:

– Lexical analysis – In this initial step, each unique termi-
nal t ∈ T is assigned a corresponding symbol, called a
token. This numerical representation is used to stream-
line the process by reducing the processing complexity
of string-only comparisons. Each new terminal is addi-
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tionally stored in a translation (symbol) table for later
reference.

– Grammatical inference – After the lexical analysis pro-
cess, the Sequitur algorithm is applied to generate an
execution trace grammar consisting of tokenized termi-
nal symbols. The first rule p ∈ P of each grammar is the
start rule, or zero rule, which depicts the full grammar of
the compressed input data. In our implementation, every
line thereafter contains the following extracted informa-
tion:

– Rule – The rule consists of a left-side rule name
(variable), which is sequentially numbered, as well as
right-side variables and terminals. The non-terminals
are, again, references to finer-grained rules while the
terminals represent the actual system events. In line
with the definition of CFGs, there is only one single
variable on the left side of a rule.

– Resolved rule – In order to provide a detailed view
on individual rules, we recursively resolve each
sequence of non-terminals n ∈ N to their base termi-
nals t ∈ T .

4.3 Rule evaluation

As part of the evaluation process, the final grammar is parsed
to determine how many times a specific derivation occurs in
each of the investigated input files. Semantically interesting
patterns include specific sequences that e.g. occur exactly
once in each input trace, making them potential common
denominators for a class of malicious behavior. Computed
information includes:

– File rule (FR) count – This number shows how many
times a rule occurs in the current input file.

– Grammar rule (GR) count – The overall count across all
supplied input files is specified here. For a single trace,
this number is identical to the FR count.

– Prevalence count – This value specifies the number of
input files a particular derivation has been found in. The
result is displayed as x/y (x in y), where x is the number
of files the pattern is prevalent and y is the overall count
of individual input files.

– Match flag – The extraction of interesting rules is facili-
tated by determining rules that are identical in occurrence
and number across all of the processed input files, indi-
cated by a Boolean flag.

– Rule length – this value defines the overall number of
items seen in the entire derivation (i.e. the resolved rule).
Multiples of the input file count y are likely to represent
recursively compressed rules.

– Rule density – this support metric facilitates anomaly
detection by calculating the ratio between inferred rules

and single terminals that are present in the input as well
as rule zero.

The various counts calculated always include references
to the original input files, which help retain each pattern’s
connection to its semantic source. In Section 5.1, we show
an exemplary scenario for a ‘verbose’ (see Section 4.1) input
set.

4.4 Rule transformation

In order to transform the newly inferred rules into an
attributed grammar as defined in Section 3.3, a set mecha-
nism is required. This mechanism allows the analyst to easily
define a naming schema for inferred rules, optimally resulting
in a semantic description of the terminals and non-terminals
contained within. In the initial version of our tool, we map
each operation to an attribute-enhanced terminal while rule
identifiers are transformed into descriptive variables: Specifi-
cally, each rule is dubbed in accordance to its semantic nature.
For example, a rule describing a process-create opera-
tion followed by a file-delete operation is transformed
into the descriptive variable CREATE-PROC_DELETE-
FILE. A rule that describes the loading of two image files
is dubbed LOAD2-IMG.

The full naming schema NS is currently defined as fol-
lows:

– NS = (O, E, MO, ME, L), where

– Operation O = {CREA, MOD, START, LOAD,
KILL, DEL, CONN}

– Event type E = {PROC, THR, IMG, FILE, REG,
NET}

– Operation mapping rules MO = {
CREA → create,
MOD → modify | change | edit,
START → start | spawn,
LOAD → load,
KILL → kill | stop | terminate,
DEL → delete,
CONN → connect
}

– Event mapping rulesME = {PROC→ process, THR
→ thread, IMG → image, FILE → file, REG →
registry, NET → network}

– and labeling rules L , where

– (O1|| "-" ||E1||"_", ..., On || "-" ||En)

– If On == On+1 then On|| "2"

The triggering process and element name are then trans-
formed into the attributes tp (X .a1) and en (a2). Recursive
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variable descriptors are supported – above naming schema
always considers the fully resolved rule. See Section 5.1 for
several examples of automatically determined variables.

Future versions of the method will replace the current
mapping with a true semantic descriptor that identifies spe-
cific attacker actions or objectives. While a manual assign-
ment of such variables is already possible [14], it is not
feasible in larger analysis scenarios. The automation of the
process is an important research challenge to come.

5 Implementation

Our grammar inference and evaluation tool is based on the
Sequitur application developed by Eibe Frank1. All core and
extended functionality has been fully implemented in Java.
The data used as basis for the analysis process is collected
using a specifically created kernel driver agent deployed on
10 actively used and malware-free (fresh installations per-
formed by security analysts) Windows 7 and Windows 10
machines within our company partner’s environment. An
additional virtual Windows instance is used for dynamically
analyzing malicious software. All machines at least provide
common user applications such as Microsoft Office, Adobe
Reader, various browsers, as well as common OS extensions
such as Java SE and the .NET framework. The collected
events are stored and processed on a dedicated PostgreSQL
database server that generates verbose or reduced traces
of specific processes or even entire system sessions. These
traces are ultimately used as input for the Sequitur approach:
SEQUIN concatenates the respective files and keeps them
apart by inserting a file delimiter that is ignored by the infer-
ence engine. This way we can handle an arbitrary number
of traces without major changes to the underlying algorithm.
Following the inference and analysis stage, ourKAMASpro-
totype visualizes the grammar and helps discover and classify
relevant elements. See Fig. 2 for a full process overview.

In practical scenarios, it might be prudent to use clustering
algorithms to pre-classify traces that are likely to share com-
mon behavior. While these algorithms typically do not yield
insight into event semantics, this intermediate step helps an
analyst to select sequences that e.g. belong to a similar class
of malware or describe a comparable attack stage. In such a
scenario, our inference tool can be used to specifically extract
behavioral patterns for a particular use case. In our initial
tests, we used Malheur [39] for this purpose.

5.1 Example

With or without preselection, our grammar inference and
evaluation tool will generate variables and production rules

1 https://github.com/craignm/sequitur/tree/master/java

for a dynamically growingnumber of terminals and attributes.
Below example demonstrates the use of our tool for two
simplified ‘verbose’ input files generated from aforemen-
tioned kernel event traces. Thread context information and
smart reordering has been omitted for better legibility. The
character tokens (a..m) were added manually for better
understanding.
Input file 1: Verbose mode (default sequence).

Delimiter: newline.
explorer.exe ,file -create ,1.exe (a)
explorer.exe ,process -start ,1.exe (b)
1.exe ,image -load ,kernel32.dll (c)
1.exe ,image -load ,advapi32.dll (d)
1.exe ,registry -modify ,hklm/software/

microsoft (e)
1.exe ,registry -modify ,hklm/software/

microsoft (e)
1.exe ,process -create ,cmd.exe (f)
cmd.exe ,process -create ,net.exe (g)
1.exe ,registry -create ,machine/system (h)
1.exe ,registry -modify ,hklm/software/

microsoft (e)
1.exe ,registry -modify ,hklm/software/

microsoft (e)
cmd.exe ,process -kill ,net.exe (i)
1.exe ,thread -terminate ,thread (j)
explorer.exe ,file -delete ,1.exe (k)

The second input file has been determined by Malheur to
be similar, however the commonalities are yet unclear. This
is where our pattern evaluation extension comes in.
Input file 2: Verbose mode (default sequence).

Delimiter: newline.
explorer.exe ,file -create ,1.exe (a)
explorer.exe ,process -start ,1.exe (b)
1.exe ,thread -create ,thread (l)
1.exe ,image -load ,kernel32.dll (c)
1.exe ,image -load ,advapi32.dll (d)
1.exe ,image -load ,ws2_32.dll (m)
1.exe ,registry -modify ,hklm/software/

microsoft (e)
1.exe ,registry -modify ,hklm/software/

microsoft (e)
1.exe ,process -create ,cmd.exe (f)
cmd.exe ,process -create ,net.exe (g)
cmd.exe ,process -kill ,net.exe (i)
1.exe ,thread -terminate ,thread (j)
explorer.exe ,file -delete ,1.exe (k)

Sequitur now infers the following rules and evaluates the
frequency and similarity. Below output has been reformatted
to contain the resolved events only for the remaining, recur-
sively created rules (rule 3), as well as rule zero. Rule density
is only calculated for the latter.

Rule 1 is found twice across thegrammar (GRcount) of the
two appended input files. The two eventsexplorer.exe,
file-create,1.exe (abbreviated: a) and explorer.
exe,process-start,1.exe (b) form the rule 1 → a
b. For a more formal breakdown summary of example input
file 1, please consult below grammar depiction AG1.
Rule: 1
explorer.exe ,file -create ,1.exe (a)
explorer.exe ,process -start ,1.exe (b)

Evaluation:
FR count (file 1, 2): 1, 1
GR count: 2
Prevalence: 2/2
Match: true
Rule length: 2
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Fig. 2 Overview of SEQUIN

Rule 2 is inferred by events c and d: 2 → c d. It is part of
both files and is thereby prevalent in the input.
Rule: 2
1.exe ,image -load ,kernel32.dll (c)
1.exe ,image -load ,advapi32.dll (d)

Evaluation:
FR count (file 1, 2): 1, 1
GR count: 2
Prevalence: 2/2
Match: true
Rule length: 2

Below rule is part of both input files, but does not perfectly
match in terms of frequency: The second trace contains two
identical occurrences instead of just one. It resolves to 3 →
e e.
Rule: 3
1.exe ,registry -modify ,hklm/software/

microsoft (e)
1.exe ,registry -modify ,hklm/software/

microsoft (e)

Evaluation:
FR count (file 1, 2): 2, 1
GR count: 3
Prevalence: 2/2
Match: false
Rule length: 2

Prevalent rule 4 is the only persisting recursively inferred
sequence of the example: It translates to 4 → 3 f g. How-
ever, Sequitur does not immediately build that rule: Initially,
the system infers 4TEMP1 → 3 f, followed by 4TEMP2 →
4TEMP1 g. Because of the rule utility property, both TEMP
rules are ultimately dissolved, resulting in the final rule 4 →
3 f g.
Rule: 4
1.exe ,rule ,rule -3
1.exe ,process -create ,cmd.exe (f)
cmd.exe ,process -create ,net.exe (g)

Evaluation:
FR count (file 1, 2): 1, 1
GR count: 2
Prevalence: 2/2
Match: true
Rule length: 3

Resolved:
1.exe ,registry -modify ,hklm/software/

microsoft (e)
1.exe ,registry -modify ,hklm/software/

microsoft (e)
1.exe ,process -create ,cmd.exe (f)
cmd.exe ,process -create ,net.exe (g)

The final rule summarizes the triple that concludes both
traces: 5→ i j k. Like rule 4, this process has an intermediate
step: Before settling on the final derivation, Sequitur builds
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the rule 5TEMP1 → i j, followed by 5TEMP2 → 5TEMP1
k.

Rule: 5
cmd.exe ,process -kill ,net.exe (i)
1.exe ,thread -terminate ,thread (j)
explorer.exe ,file -delete ,1.exe (k)

Evaluation:
FR count (file 1, 2): 1, 1
GR count: 2
Prevalence: 2/2
Match: true
Rule length: 3

From these 5 final rules, a compressed zero rule can be
inferred. The resolved rule yields the concatenated original
input of both files separated by a file delimiter: 0 → (file 1)
1 2 800 4 h 3 5 (file 2) 1 l 2 m 4 5.

Rule: 0
explorer.exe ,rule ,rule -1
1.exe ,rule ,rule -2
1.exe ,rule ,rule -4
1.exe ,registry -create ,machine/system (h)
1.exe ,rule ,rule -3
cmd.exe ,rule ,rule -5
-
explorer.exe ,rule ,rule -1
1.exe ,thread -create ,thread (l)
1.exe ,rule ,rule -2
1.exe ,image -load ,ws2_32.dll (m)
1.exe ,rule ,rule -4
cmd.exe ,rule ,rule -5

Evaluation:
Rule density (input: 3 out of 27): 88.9
Rule density (rule 0: 3 out of 9): 66.6

Resolved:
(see concatenated input)

In our example, the tool has successfully extracted rules
that describe behavior observed in both input files. With
the uncompressed events 1.exe,registry-create,
machine/system,1.exe,thread-create,thread,
and1.exe,image-load,ws2_32.dllhighlighted,we
can immediately spot the deviations from the otherwise
recurring behavior.

In conclusion, the output is transformed into an attribute
grammar as described in Section 3.3. Since semantics is a
major factor of rule construction, we assign variables based
on the nature of the inferred event. Specifically, above exam-
ple (here: only for file 1 of rule 0) can be formalized into a
grammar as follows:

Let AG1 = (G1, A, R, V ) be an inferred CFG extended
by attributes, where:

– G1 = (N , T , P, S), and where:

– N = {CREA-FILE_START-PROC; LOAD2-IMG;
MOD2-REG_CREA2-PROC; MOD2-REG; KILL-
PROC_KILL-THR_DEL-FILE}

– T = {
file-create.tp, en = explorer.exe, 1.exe;
file-delete.tp, en = explorer.exe, 1.exe;
process-create.tp, en = explorer.exe, 1.exe;

process-create.tp, en = 1.exe, cmd.exe;
process-create.tp, en = 1.exe, net.exe;
process-kill.tp, en = cmd.exe, net.exe;
image-load.tp, en = 1.exe, kernel32.dll;
image-load.tp, en = 1.exe, advapi32.dll;
registry-create.tp, en = 1.exe, machine/system;
registry-modify.tp, en = 1.exe, hklm/software/mi-
crosoft;
thread-terminate.tp, en = 1.exe, thread;
}

– P = {
ZERO-RULE→CREA-FILE_START-PROCLOAD2-
IMG MOD2-REG_CREA2-PROC registry-create.
tp, en = 1.exe,machine/system MOD2-REG KILL-
PROC_KILL-THR_DEL-FILE;
CREA-FILE_START-PROC → file-create.tp, en =
explorer.exe,1.exe process-create.tp, en = explorer.
exe,1.exe;
LOAD2-IMG→ image-load.tp, en =1.exe,kernel32.dll
image-load.tp, en = 1.exe,advapi32.dll;
MOD2-REG→ registry-modify.tp, en =1.exe,hklm/
software/microsoft registry-modify.tp, en = 1.exe,
hklm/software/microsoft;
MOD2-REG_CREA2-PROCMOD2-REG→process-
create.tp, en =1.exe,cmd.exe process-create.tp, en =
cmd.exe,net.exe;
KILL-PROC_KILL-THR_DEL-FILE→process-kill.
tp, en = cmd.exe, net.exe thread-terminate.tp, en =
1.exe,thread file-delete.tp, en = explorer.exe, 1.exe
}

– S = {ZERO-RULE}

– A = {tp; en}
– R is described as part of the preprocessing stage and
defineswhich portion of the data translates into triggering
process tp (vi ), operation (tx ), and element en (v j ).

– V = {explorer.exe; 1.exe; kernel32.dll; advapi32.dll;
cmd.exe; net.exe; machine/software/microsoft; machine/
system; thread}

Above attribute grammar for part 1 of the zero rule has
been generated automatically and can now be used as the
foundation for further (attribute-based) parsing efforts. The
inferred variables, if stored, can be used as new behavioral
templates for comparable input data sets. Above definition
can easily be extended to encompass specific files, or all of
them at once (entire zero rule).

The next Section discusses practical applications of this
approach and evaluates them using real-world data.

6 Evaluation

The introduced system has a wide variety of applications.
Ranging from preliminary knowledge extraction in malware
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Table 3 Scenarios covered by
experiments, in order of
appearance by subsection

Scenario Eval. Significance

Compression 6.1 Reduction of input data size

Reduction of processing complexity (third-party)

Anomaly detection 6.2 Detection and extraction of deviating behavior

Baselining 6.2 Identification of common patterns in traces

Visualization 7 Visual presentation of inferred rules

Discovery 7 Interactive filtering and extraction of terminals/rules

Rule labeling, storing

Highlighting of known rules

analysis scenarios to understanding more complex attacks,
the adapted inference methodology is versatile in both terms
of input data as well as practical benefit. Below, we introduce
and evaluate some of its applications and discuss future and
ongoingwork. Table 3 provides an overviewof the conducted
experiments.

6.1 Preparatory data reduction

6.1.1 Concept

In many malware and APT attack stage analysis scenarios,
analysts are often forced to deal with huge amounts of data.
Be it kernel events, raw system calls or even assembler-level
CPU instruction information, the abstraction and reduction
of input data is essential to decrease the complexity of many
an analysis task. Our solution provides the means through
its easily adaptable preprocessing mechanism (see Section
4.1) and the grammar inference system itself. By using the
Sequitur approach, it is possible to reduce the input corpus
to only relevant n-grams (n ≥ 2), instead of working with
the full, unfiltered set of event or code snippet unigrams.
The grammar transformation mechanism (see Section 4.4)
also enables us to work with an automatically generated
placeholder variable n ∈ N instead of several compound
terminals.

A second, closely related application of Sequitur com-
pression is the extraction of recurring patterns. Dubbed
‘baselining’, this process takes the result of the inference
process and regards sequences of terminals that have been
turned into rules. The discovery process is best supported by
our KAMAS VA prototype introduced in Section 7.

6.1.2 Evaluation

Current efforts include the pre-abstraction of behavioral data
in graph notation (also see Section 3.4) subsequently used
for edit distance calculations [30]. Minimizing the amount of
data to be processed drastically reduces computation require-
ments of expensive (up to exponential complexity, depending
on the application) graph transformation operations. Specif-

ically, we evaluated several days’ worth of benign system
events monitored by our kernel driver (see 5 for event capture
details), collecting 100k, 200k, and 400k sequential events
with different size alphabets and rule density – all associ-
atedwith instances of theWindowssvchost.exe process.
Under normal circumstances, this data would have to be
assessed in its uncompressed entirety, as it is used for cre-
ating baseline graph templates utilized in behavior deviation
analysis using a combination of Hungarian distance com-
putation [26] and Malheur heuristic clustering [39]. Thanks
to our Sequitur-enabled data reduction, we can focus on
event sequences (rules) that are representative for specific
processes – or on the remaining terminals which consti-
tute a potential anomaly. Both significantly speed up all
involved, polynomial complexity star graph matching opera-
tions (Fig. 4) used by the tested system [30].At the same time,
we increase the accuracy of the template creation process by
drastically reducing the number of empty feature vectors that
are normally produced in the clustering stage.

In our first, medium-sized exemplary dataset of 100kWin-
dows kernel events (alphabet of 665 words), we reduced the
number events to a list of 1,715 terminals and 6,415 first-level
rules (contained in the zero rule), which effectively com-
pressed the data by 90.7%. This cut the processing time for
graph template generation and graph transformation calcula-
tions by 77.64%, down to a total of 8.75+1.9minutes, instead
of 48.2 minutes sans compression. Performance evaluation
showed a maximum memory utilization of around 1.3 GiB,
with a total processing time of 1.9 minutes (9.1 minutes with
full rule resolving) on a dual core virtual machine equipped
with 64 GiB of RAM.

The second and third datasets encompassed an alpha-
bet of 1,310 and 1,569 words, respectively. We achieved a
compression rate of 95.95% and 98.26%, which reduced the
graph processing time by 64.91% and 77.26%. RAM usage
increased to 2.35 GiB for the 200k dataset, and to 4 GiB for
the 400k trace. Figure 3 and 4 show basic regression analy-
ses of grammar inference and graph processing times as well
as RAM utilization during compression. See [30] for more
information on star graph template generation and matching.
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Fig. 3 Performance analysis of
Sequitur inference. Both
processing time and RAM
utilization grow at a linear rate.
The alphabet size (not pictured)
was determined to have a greater
impact on the time required than
on physical memory use

Fig. 4 Performance impact on
graph matching operations. The
chart compares the time
required for creating a template
using uncompressed data versus
the non-terminals inferred by
Sequitur. Input filtered to rules
with a prevalence count
PC > (n/m), where
m < 0.2 ∗ n (here: m = 1000)
and n = number of unique
processes per dataset. Results
show an average speed-up of
around 73% for kernel event
data
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6.1.3 Discussion

The overall process was determined as scaling at linear time
O(n), putting it in line with e.g. basic search algorithms
and confirming the results disseminated by [37]. RAM con-
sumption scaled linearly as well – in case of our machine,
we expect to hit the memory ceiling of 64 GiB at around
6 million events, provided the size of the alphabet grows
at a similarly steady rate. SEQUIN without rule resolving
performed best overall, saving up to 90% of its processing
time for the largest (400k) dataset. Because of this signifi-
cant overhead, rule resolving will in the future be performed
independently from compression – directly in our growing
database of known productions. This will offer a convenient
way to compute and look up patterns without negatively
impacting performance during the actual inference process.

In terms of semantic accuracy, over-zealous recursive
compression needs to be considered when applying the
approach to data with large repeating sequences of terminals,
as it may combine too many individual events of significance
into one long rule, which in turn consists of other lengthy
rules describing similar behavior. This could not only skew
the result, but also eliminate some of the performance ben-
efits evaluated above. In our experiments, we have found it
prudent to impose a limit on maximum resolved length for
terminal-only rules. Another approach is to set a minimum
limit on prevalence count (see Section 4.3) to remove non-
terminals that occur in only a few input files. The thresholds
for these operations largely depend on the nature of the data
used and will have to be determined by experimentation on
a case-to-case basis.

SEQUINhas proven to bewell suited to the task of prepro-
cessing/reducing input data needed by other, more expensive
algorithms. We achieved an average speed-up in star-graph
data processing of 73% when employing our system to the
same dataset. Data sizes were reduced by up to 98%.

6.2 Anomaly detection

6.2.1 Concept

In our above preprocessing example, we use grammar infer-
ence to determine interesting repeating patterns that are
representative of the corpus under investigation. However,
the reverse is also a viable scenario: By focusing attention on
patterns that do not excessively reoccur, our approach can be
used to identify anomalies in a sequence or set of sequences.
Parts of the trace that are not replaced by variables during rule
construction (i.e. the remaining terminals in between) repre-
sent unique events that, in such a scenario, are of particular
interest as they represent deviating (abnormal) behavior. Rule
density (see 4.3) is also important in scenarios where stable
behavior is expected: the higher the share of terminals, the

higher the overall entropy, and, by extension, the likelihood
of anomalous behavior. All anomaly detection efforts can be
aided by visualization tools such as GrammarViz [45] as well
as our own VA research introduced in Section 7 below.

6.2.2 Evaluation

The Sequitur tool is not limited to system events but can be
usedwith awide range of sequential input data formats. In the
following, we specifically evaluated an APT anomaly detec-
tion scenario on a set of temperature, speed, and photoelectric
sensor data generated by a Siemens Simatic industrial con-
trol system (ICS) within a testbed environment. We assessed
13 full production runs in total, whereas two of the runs were
maliciously altered by illegally interfering with the rotation.
This resulted in some atypical sensor readings that are nigh
impossible to spot manually.

The full evaluated grammar for a total of 34,000 observed
events was constructed within 5 seconds. Sequitur inferred a
total of 2,155 rules (sans zero rules), resulting in a 93.7%data
compression rate. In stage one, anomaly detection was con-
ducted by assessing rules with a low rule density value. By
that metric alone, it was already possible to identify anoma-
lous traces.With a terminal-to-rule ratio (TRR)of over 62.7%
(rule density of 37.3%), themalicious samples contained less
uniform behavior patterns than the remainder of 11 traces
with a mean ratio of 59.3%. Only two benign traces came
close to that number, exceeding a TRR of 60%. The compar-
atively small margin is due to the fact that, in this scenario,
anomalous data did not cause sensor spikes but rather trig-
gered a slow, continuous change in behavior.

Further analysis of the possibly deviating behavior was
(and is typically) required to solidify the initial verdict. To
this end, we used our evaluation system to filter rules that are
present in only a minority of files and that have a prevalence
count of 1 out of 12. Armed with the pre-selection based on
rule density, we particularly focused on traces with a TRR of
>60%. Specifically, we normalized the scores for TRR (xT ),
mean rule length (xL ), and the count of low-prevalence rules
(xP ) and computed a weighted total XWT :

XWT = 0.4
xT − min(xT )

max(xT ) − min(xT )
+ 0.1

xL − min(xL )

max(xL) − min(xL )

+0.5
xP − min(xP )

max(xP ) − min(xP )
(1)

Table 4 lists the computed values for each trace. As a
result, the Youden index BCa bootstrap confidence interval
[16] was determined as 0.55..1, resulting in an associated
criterion score threshold of 0.66 for distinguishing true from
false matches. For ICS data, a manual adjustment to a higher
threshold (e.g. 0.75) can further increase result confidence.
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Table 4 Scores for TRR, mean
rule length (Length), and rules
with minimum (= 1) prevalence
count (Preval). Columns marked
with an asterisk (*) mark values
normalized to 0..1 as per
Equation (1). Normalized scores
≥ 0.8 are printed in bold

Sample trace TRR TRR* Length Length* Preval. Preval.* Overall

Ben-1 58.60 0.33 8.87 0.44 2 0.20 0.274

Ben-2 64.00 1.00 9.28 0.95 9 0.90 0.945

Ben-3 59.30 0.41 8.9 0.48 2 0.20 0.313

Ben-4 56.00 0.00 8.51 0.00 1 0.10 0.050

Ben-5 56.80 0.10 8.52 0.01 1 0.10 0.091

Ben-6 58.30 0.29 8.79 0.35 2 0.20 0.250

Ben-7 59.20 0.40 8.69 0.22 0 0.00 0.182

Ben-8 60.00 0.50 8.72 0.26 4 0.40 0.426

Ben-9 63.80 0.98 9.32 1.00 0 0.00 0.490

Ben-10 57.30 0.16 8.6 0.11 3 0.30 0.226

Ben-11 58.50 0.31 8.79 0.35 10 1.00 0.660

Mal-1 62.80 0.85 9.01 0.62 9 0.90 0.852

Mal-2 62.74 0.84 8.99 0.59 9 0.90 0.846

Table 5 Extracted and
evaluated rules for ICS sensor
data traces with low rule density
(≤ 40%) and prevalence count
(= 1). Each rule describes an
anomaly not typically seen in
other input data. FR...file rule,
GR...grammar rule

File Rule FR # GR # Prevalence Length

Ben-2 3 → 139 139 2 2 1/12 16

Ben-2 4 → 140 140 3 3 1/12 4

Ben-2 12 → 1-0-1-(...)-0-40 1-0-1-(...)-0-40 2 2 1/12 2

Ben-2 23 → 1-0-1-(...)-1-56 1-0-1-(...)-1-56 2 2 1/12 2

Ben-2 69 → 1-0-1-(...)-5-59 1-0-1-(...)-5-59 2 2 1/12 2

Ben-2 98 → 1-0-1-(...)-8-60 1-0-1-(...)-8-60 2 2 1/12 2

Ben-2 102 → 0-0-1-(...)-8-54 0-0-1-(...)-8-54 2 2 1/12 2

Ben-2 139 → 4 4 2 2 1/12 8

Ben-2 140 → 0-0-0-(...)-0-20 0-0-0-(...)-0-20 2 2 1/12 2

Mal-1 57 → 1-0-1-(...)-4-60 1-0-1-(...)-4-60 2 2 1/12 2

Mal-1 72 → 1-0-1-(...)-6-52 1-0-1-(...)-6-52 2 2 1/12 2

Mal-1 81 → 82 82 2 2 1/12 64

Mal-1 82 → 83 83 3 3 1/12 32

Mal-1 83 → 157 157 3 3 1/12 16

Mal-1 84 → 85 85 3 3 1/12 4

Mal-1 85 → 1-0-1-(...)-7-60 1-0-1-(...)-7-60 3 3 1/12 2

Mal-1 86 → 1-0-1-(...)-7-59 1-0-1-(...)-7-59 2 2 1/12 2

Mal-1 157 → 84 84 2 2 1/12 8

Now, we can now analyze the outcome of the inference
process in detail: Benign trace 2 ("Ben-2" in Table 5) con-
tained 9 rules that were not seen in the the remaining corpus.
Likewise, bothmalicious traces (pictured here: "Mal-1") con-
tained 9 unique rules. A direct comparison of the remaining
anomalous candidates highlights one particularly interest-
ing, recursively compressed block per trace, which resolved
into 16 (benign) and 64 (malicious) terminals, respectively.
It stands to note that patterns with a higher average length are
particularly interesting as they identify larger, uninterrupted
sequences unique for the dataset under scrutiny.

See Table 5 for a direct comparison of two of the most
deviating behavior traces. Rule 3 of "Ben-2", which resolves

into 8 terminal pairs as inferred by rule 140 (a rare, but valid
sensor state), contributes most to the trace’s analysis verdict.
For "Mal-1", the same applies to rule 81 (32 iterations of rule
85), effectively identifying the anomalous sensor state. The
accuracy of this evaluation scenario is detailed in Fig. 5 and
boasts a high false positive and false negative rate, especially
when removing faulty runs. The extracted, semantically rele-
vant rules can nowbe formalized and stored for future parsing
efforts.

For a simple baselining experiment, we used our SEQUIN
tool on two lengthy traces depicting the Windows 7 update
process performed on two machines with the same OS patch
level. With 10,769 events in update 1 and 11,057 events
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Fig. 5 ROC curve of the anomaly detection run. 12 out of 13 sets
of sensor data traces were classified correctly with a sensitivity (true
positive rate) of 100% and a specificity (true negative rate) of 100%.
ROC area (AUC) was determined as 0.909. Since the deviating benign
run is actually faulty despite not being a deliberate attack, its removal
would boost the overall accuracy to 100% in our particular test case

in the second update, the combined compression gener-
ated 250 rules in total, 218 of which were contained in
both input files. The randomly generated 32-bit strings used
as names for the respective download directories within
the windows/softwaredistribution/download
folder structurewere replaced during normalization as part of
the preprocessing stage (Section 4.1). The remaining unique
rules as well as terminals were deviations from the computed
baseline caused by random temporary file names and minor
changes in update chronology. In practice, this variant of
the inference process can be used to create whitelists, tem-
plates for benign process behavior, or, again, for extracting
anomalies from seemingly benign sequences of application
behavior.

6.2.3 Discussion

In terms of accuracy, anomaly detection or baselining efforts
are less likely to require fine-tuning than the compression
routine (see ‘Discussion’ in Section 6.1), as the number of
recursive rule-building iterations does not negatively impact
the result. Instead of limiting the length of resolved rules, the
extraction of relevant data is based on choosing the correct
rule density and prevalence for the dataset under investiga-
tion. Here, analysts need to keep in mind that choosing the
latter is tied to the expected number of malicious input traces

that might share the same characteristics (identical inferred
rules): The more often harmful sequences are assumed to
repeat in the corpus, the higher theprevalence thresholdneeds
to be and the less likely it becomes to spot the behavior using
anomaly detection.

Initial tests determined an accuracy of well above 92% for
the detection of deliberate attacks. Relevant anomalies were
found in all of the inspected cases. For more complex scenar-
ios it is recommended to apply visual analytics techniques
that enable interactive data exploration: After the extraction
of possible anomalies or baselines, a domain expert can inves-
tigate further to determine the individual events t that truly
describe an illegal action. While this can be done textually
using only our inference system, a visuals-assisted solution
such as KAMAS promises (see 7 below) even better results.

7 Visualization &knowledge discovery

7.1 Visual analytics

One of the major applications of our proposed solution
is undoubtedly the extraction of new domain knowledge.
Inferred patterns can be compiled into a permanent gram-
mar used to detect similar behavior in unknown traces. This
process is supported by interactive visualization to drastically
improve usability. This area of research, typically referred to
as visual analytics (VA), forms the basis for KAMAS, our
novel system used to visualize SEQUIN’s output for pat-
tern discovery and semantic annotation. In the following, we
briefly explain the concept of VA, KAMAS’ design consid-
erations, and the prototype implementation itself.

VA is “the science of analytical reasoning facilitated by
interactive visual interfaces” [52]. A major tenet of VA is
that analytical reasoning is not a routine activity that can be
automated completely [60]. Instead it depends heavily on
the analysts initiative and domain experience, which is exer-
cised through interactive visual interfaces. Such interfaces,
especially information visualizations, are high bandwidth
gateways for the depiction of structures, patterns, and con-
nections hidden in the data. Furthermore, visual analytics
often involves automated analysis methods that perform var-
ious computations on potentially large volumes of data.

When analysts solve real world problems they typically
have vast amounts of complex and heterogeneous data at
their disposal, as is evidenced by above application scenarios
(see Sections 6.1 and 6.2). Externalization and storing of
implicit knowledge will make it available as explicit domain
knowledge, which is defined as knowledge that “represents
the results of a computer-simulated cognitive process, such
as perception, learning, association, and reasoning (...)” [9].

Through visualization, explicit knowledge can be used
to graphically summarize and abstract a dataset. Put sim-
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ply, it enables quicker and more precise analyses of complex
input data such as the set of traces used in our ICS exam-
ple.

Using VA for security applications is a widely accepted
practice. In Wagner et al. [55], the authors surveyed tools for
behavior-based malware analysis in addition to visual repre-
sentations best suited to various domain challenges. Through
a data–users–tasks analysis [33], they ascertained that the
parse tree of a grammar such as the one generated by the
Sequitur algorithm, can be abstracted to a directed acyclic
graph, where each node represents part of a sequence.

7.2 Visualization considerations

The nature of the event data and the inference algorithm
employed builds the foundation for our knowledge-assisted
malware analysis tool, dubbed KAMAS [57], which is
intended to support analysts in their task of identifying
relevant behavioral patterns. In preliminary research [55],
problem characterization and abstraction [43]was performed
to elaborate the analysts’ needs when using visual analytics
for behavior-based malware analysis. This way, a common
terminology describing i) the data to be visualized; ii) the
users of the system; and iii) the tasks to be fulfilled, was
established. Based on the outcome of this problem charac-
terization, the initial design decisions for the visualization of
data generated by the Sequitur algorithm can be established:

– Representation of explicit knowledge. To support the
analysts in their task of behavior-based malware analy-
sis, explicit expert knowledge should bemade available in
the system. Additionally, the actual generation of explicit
knowledge needs to be facilitated. For the visualization
of that knowledge, a basic hierarchy of events is required.
We utilized the malicious behavior schema byDornhackl
et al. [14]: Using the provided semantic categorization, it
is possible for analysts to explore currently stored knowl-
edge and to add newly inferred rules to the system. The
visualization of the malicious behavior schema employs
a tree structure, where the nodes are the different types
of malicious behavior and the leaves are the rules for its
representation (see Fig. 6:1).

– Representation of events. For the representation of the
events included in an analysis file, two important aspects
have to be covered. On the one hand, the name of the
event (see Section 3.4 formore information on input data)
is essential for the analyst who is trying to ascertain its
purpose. On the other hand, it is very important to learn
how often a single event is included in the analysis file.
We use a table structure for the visualization of this data,
whereby the event name is represented as string and its
occurrence is represented as a bar chart including the
total number as an overlay. Employing this visualization

technique, the analyst gains the ability to quickly find
events of interest (e.g., by visually analyzing the size of
the bar charts) (see Fig. 6:3).

– Representation of rules. Since a rule is a sequential
structure containing several events, it is prudent to use
a similar representation as for individual items. In con-
trast to the representation of all events included in a rule
(resolved rule, see 4.2), a more abstract visualization can
be applied here. The transformation of events based on
their unique ID into a graphical representation (which is
called ‘Graphical Summary’ [57]) helps to more effec-
tively locate unknown patterns in the data. Additionally,
all the other related information can be visualized as bar
charts in combination with a label representing the total
number (e.g., the rule’s prevalence and length as intro-
duced in Section 4.3). The original order of events within
a rule is highlighted (see Fig. 6:2).

To determine analysts’ requirements for behavior-based
malware analysis with regards to usable visualization
metaphors [55], a basic set of well-known visualization
techniques was evaluated. Most of the participants indi-
cated a combination of Multiple View [19], Arc Diagrams
[59] and Wordtree [58] as being the most helpful, fol-
lowed by OutFlow [61] and Pixel-Oriented Visualization
[25]. In contrast, the Parallel Tag Cloud [11], has been
described as the least complementing solution in respect to
behavioral trace analysis. In the following, we detail the
visualization concepts leading up to the development of
research prototypes for both data processing and visualiza-
tion.

7.3 Implementation

Aforementioned visualization considerations were used as
a guideline to define the design rationale of KAMAS [57].
We decided to use an interface concept akin to well-known
programming IDE interfaces (e.g. Eclipse) as the conceptual
foundation for our prototype. This helps create a familiar
environment based on multiple, vertically separated views
(see Fig. 6).

In respect to these interface structures, we placed the tree
view of the ‘Knowledge Database (KDB) on the left side of
the window (see Fig. 6:1). The KDB element contains all
the explicit knowledge used for automated analysis; newly
extracted patterns can be stored in a database for later use,
whereas existing ones serve as real-time filter that automat-
ically highlights known patterns. The key ‘Rule Explorer’
element is positioned in the center of the screen, where most
user actions are performed during the analysis of a trace
(see Fig. 6:2). Here, the analyst can see the different rules
generated by Sequitur, including all information pertaining
to its file and grammar count as well as its length. Select-
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Fig. 6 Illustration of the Knowledge-assisted Malware Analysis Sys-
tem (KAMAS) designed to support malware analysts in their work. The
interface encompasses a (1) ‘Knowledge Base’ for automated analysis

and knowledge sharing between the analysts, a (2) ‘Rule Exploration’
area, and a (3) ‘Call Exploration’ area used to investigate individual
events. Various filters at the bottom help to remove redundant data

ing a specific element expands the fully resolved rule for
further study. Additionally, an arc diagram will be shown
to highlight events that constitute a known sequence. The
‘Call Exploration’ area is positioned on the right side of the
interface (Fig. 6:3), similar to the functions overview area
in commonly used programming IDEs. Here, the analyst is
provided with the ability to explore all of the events included
in the rules that are presented/highlighted in the center ele-
ment. The ‘Call Exploration’ view lists all events contained
in the loadedfile(s). To copewith the potentially huge amount
of data, the analyst has the ability to use different, regular-
expression-enabled filters to locate data of interest. Newly
discovered patterns can be added into the KDB via a simple
drag and drop action.

In addition to the IDE-like design decision, we used the
Gestalt principles of proximity and similarity [23] to improve
interface clarity. Each exploration area (Rule Explorer and
Call Explorer) is expanded with its own filtering elements
located directly below the visualized data. Based on all
aforediscussed findings and concepts, we finally created the
KAMAS VA prototype for visualizing and assessing the pat-
terns generated by SEQUIN. Figure 6 depicts a screenshot
of the main interface. Analysts have found the tool a useful
addition to their workflow of exploring potentially harmful
traces of events, be it system calls or OS kernel operations.
A full evaluation of KAMAS, including a comprehensive
usability study, is disseminated in [57]. The prototype has

been released online under Creative Commons Attribution
license2.

8 Limitations and future work

While SEQUIN is a versatile solution that offers support to
IT security experts and (malware) analysts alike, it is con-
strained by a number of limitations. As suggested in the
discussion of Sections 6.1 and 6.2, the system does not cur-
rently provide an automated way of determining the optimal
length of rules representative for an anomaly. The recursive
nature of operation of the Sequitur algorithm is likely to pro-
duce rules within rules that, semantically speaking, amount
to the same result. Right now, it is up to the analyst to impose
length, TRR, and prevalence thresholds to counter this limi-
tation.

On the data input side, we are currently required to inter-
nally concatenate the individual files and separate them with
a file delimiter, which is skipped by Sequitur’s rule building
engine. This puts greater emphasis on the selection process
of input traces, since SEQUIN will only start to infer rules
that occur at least twice in the overall input. Too diverse an
input will result in a lower compression ratio and anomaly
detection accuracy. At the same time, the use of smart traces

2 https://phaidra.fhstp.ac.at
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sacrifices someof the trace’s chronologyby reordering events
according to their process and thread context.While this usu-
ally improves the results, long-running processes of lengthy
sessions will skew the timeline more than processes/threads
that execute, run, and terminate within a shorter window.
Here, a mechanism of intelligently segmenting traces will
have to be developed to improve accuracy.

One of the other main areas of future improvement
is undoubtedly the automated semantic interpretation of
inferred variables, which, in the tool’s current iteration, are
assigned based on the operations (terminals) that constitute
the respective rule. In the future, this representation will
be updated to include actual attacker goals and (malicious)
actions that go beyond the purpose-neutral label currently
assigned by the naming schema. Ultimately, we plan to link
the process to the team’s previous work, which focuses on
the development of a targeted attack ontology [28]. Auto-
matically extracted events will be mapped to said ontology,
thereby providing a complete view on likely attack scenarios
induced by the events in question.

Another area of future research is the improved inclu-
sion of the temporal domain. Currently, the order of events
is maintained only within process and thread context (see
3.4). This allows for an investigation of sequences but does
not consider the delay between two behavioral instances. As
part of further abstraction efforts it is planned to prepend a
temporal identifier to each event, which will transport infor-
mation about the relative time and duration of execution.

In terms of validation, future work will encompass further
proof of soundness for the attribute grammar specification
used in the paper. Furthermore, we will formally test our
behavioral engine against evaluation systems such as the one
introduced by Filiol et al. [18]. Specific applications like the
anomaly detection functionality discussed in Section 6.2 will
also be evaluated using an even larger andmore diverse set of
behavioral traces to determine the best suited application sce-
narios. Furthermore, semantic synergies to the graph-based
anomaly detection system [30] mentioned in Section 6.1 will
be explored in depth. Optimizations for both systems are cur-
rently in the works.

On the knowledge discovery side, it is planned to continue
development of the KAMAS visualization tool presented in
Section 6. Specific functionality enabling further statistical
assessment will be included to facilitate (malware) forensics,
automated sample classification, and various intrusion detec-
tion scenarios coupled with a database of explicit domain
knowledge.

In general, the automated cross-integration of visual ana-
lytics and knowledge discovery methods will be an integral
part of our future research into the practical applications of
the Sequitur approach.

9 Conclusion

This paper presented a grammar inference system based on
an adapted version of Nevill-Mannings’ Sequitur algorithm.
Thanks to its versatile nature, the tool offers various ben-
efits to the information security community, ranging from
knowledge discovery in sequential system activity or mal-
ware execution traces to applied anomaly detection, baseline
template generation, and grammar-enabled behavior discov-
ery and interpretation.

We have successfully tested the induction and analysis
system with several classes of input data. When used to
streamline input traces for other, computationally expensive
processes, we have achieved a significant reduction in com-
plexity by extracting representative variables that describe
relevant patterns. In our tests, the mean processing time for
polynomial graph operationswas reduced bymore than 70%.
Whilst comparative performance evaluations have not been
performed, the results presented in Section 6 demonstrate the
feasibility of using our grammar inference approach over sys-
tems that rely on the manual definition of rules. In addition,
anomaly detection based on the rule density metric showed
promising results by identifying deviating traces and their
behavioral sequences in close to real time. Attack detection
accuracy of an evaluated ICS sensor data scenario was well
above 92% with a specificity of close to 91% (100% each
when removing faulty benign runs), while each and every
deviating behavioral pattern (benign and malicious both)
was successfully extracted for further investigation. With
KAMAS, we additionally introduced a visual analytics plat-
form that uses the generated data to assist analysts in locating,
extracting, and classifying relevant rules.

All in all, the introduced grammar inference tool can
be used to quickly and accurately discover and highlight
recurring patterns in sequential sets of arbitrary host and
network event traces, thereby aiding in bridging the seman-
tic gap between captured data and attacker behavior. The
wide range of tested applications makes SEQUIN a unique
tool in the repertoire of malware analysts and researchers
alike.
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