97 research outputs found
Birthweight measurement processes and perceived value: qualitative research in one EN-BIRTH study hospital in Tanzania.
BACKGROUND: Globally an estimated 20.5 million liveborn babies are low birthweight (LBW) each year, weighing less than 2500âg. LBW babies have increased risk of mortality even beyond the neonatal period, with an ongoing risk of stunting and non-communicable diseases. LBW is a priority global health indicator. Now almost 80% of births are in facilities, yet birthweight data are lacking in most high-mortality burden countries and are of poor quality, notably with heaping especially on values ending in 00. We aimed to undertake qualitative research in a regional hospital in Dar es Salaam, Tanzania, observing birthweight weighing scales, exploring barriers and enablers to weighing at birth as well as perceived value of birthweight data to health workers, women and stakeholders. METHODS: Observations were undertaken on type of birthweight scale availability in hospital wards. In-depth semi-structured interviews (n =â21) were conducted with three groups: women in postnatal and kangaroo mother care wards, health workers involved in birthweight measurement and recording, and stakeholders involved in data aggregation in Temeke Hospital, Tanzania, a site in the EN-BIRTH study. An inductive thematic analysis was undertaken of translated interview transcripts. RESULTS: Of five wards that were expected to have scales, three had functional scales, and only one of the functional scales was digital. The labour ward weighed the most newborns using an analogue scale that was not consistently zeroed. Hospital birthweight data were aggregated monthly for reporting into the health management information system. Birthweight measurement was highly valued by all respondents, notably families and healthcare workers, and local use of data was considered an enabler. Perceived barriers to high quality birthweight data included: gaps in availability of precise weighing devices, adequate health workers and imprecise measurement practices. CONCLUSION: Birthweight measurement is valued by families and health workers. There are opportunities to close the gap between the percentage of babies born in facilities and the percentage accurately weighed at birth by providing accurate scales, improving skills training and increasing local use of data. More accurate birthweight data are vitally important for all babies and specifically to track progress in preventing and improving immediate and long-term care for low birthweight children
Characteristics of Jupiterâs Xâray auroral hot spot emissions using Chandra
To help understand and determine the driver of jovian auroral X-rays, we present the first statistical study to focus on the morphology and dynamics of the jovian northern hot spot (NHS) using Chandra data. The catalogue we explore dates from 18 December 2000 up to and including 8 September 2019. Using a numerical criterion, we characterize the typical and extreme behaviour of the concentrated NHS emissions across the catalogue. The mean power of the NHS is found to be 1.91 GW with a maximum brightness of 2.02 Rayleighs (R), representing by far the brightest parts of the jovian X-ray spectrum. We report a statistically significant region of emissions at the NHS center which is always present, the averaged hot spot nucleus (AHSNuc), with mean power of 0.57 GW and inferred average brightness of ⌠1.2 R. We use a flux equivalence mapping model to link this distinct region of X-ray output to a likely source location and find that the majority of mappable NHS photons emanate from the pre-dusk to pre-midnight sector, coincident with the dusk flank boundary. A smaller cluster maps to the noon magnetopause boundary, dominated by the AHSNuc, suggesting that there may be multiple drivers of X-ray emissions. On application of timing analysis techniques (Rayleigh, Monte Carlo, Jackknife), we identify several instances of statistically significant quasi-periodic oscillations (QPOs) in the NHS photons ranging from ⌠2.3-min to 36.4-min, suggesting possible links with ultra-low frequency activity on the magnetopause boundary (e.g. dayside reconnection, Kelvin-Helmholtz instabilities)
Long Exposure Chandra XâRay Observation of Jupiter's Auroral Emissions During Juno Plasmasheet Encounters in September 2021
On 15 September 2021, Chandra carried out a 40âhr (âŒ4 jovian rotations) observation as part of its longest planetary campaign to study the drivers of jovian Xâray aurora that may be linked to ultraâlow frequency (ULF) wave activity. During this time, Juno's orbit had taken the spacecraft into Jupiter's dusk magnetosphere. Here is believed to be the most probable location of ULF waves propagating along jovian magnetic field lines that drive the Xâray auroral emissions. This is the first time that this region has been observed by an orbiter since Galileo >20 years ago, and never before has there been contemporaneous in situ and Xâray observations. A 1D solar wind propagation model identifies a compression event near the midpoint of the 40âhr observation window. The influence of a compression is confirmed when comparing the measured magnetic field in the dusk lobes of the magnetotail from Juno MAG data against a baseline lobe field model. Data from the Juno Waves instrument also show activation of broadband kilometric (bKOM) emissions during the arrival of the shock, a feature that has previously been observed during compression events. Therefore this is the first time we can fully analyze the morphological variability during the evolution of a shock. Wavelet transforms and Rayleigh testing are used to search for statistically significant quasiâperiodic pulsations (QPPs) of the Xâray emissions in the data set, and find significant QPPs with periods of 25â26 min for the northern auroral Xârays
Identifying the Variety of Jovian X-Ray Auroral Structures: Tying the Morphology of X-Ray Emissions to Associated Magnetospheric Dynamics
We define the spatial clustering of X-rays within Jupiter's northern auroral regions by classifying their distributions into âX-ray auroral structures.â Using data from Chandra during Juno's main mission observations (24 May 2016 to 8 September 2019), we define five X-ray structures based on their ionospheric location and calculate the distribution of auroral photons. The morphology and ionospheric location of these structures allow us to explore the possibility of numerous X-ray auroral magnetospheric drivers. We compare these distributions to Hubble Space Telescope (HST) and Juno (Waves and MAG) data, and a 1D solar wind propagation model to infer the state of Jupiter's magnetosphere. Our results suggest that the five sub-classes of âX-ray structuresâ fall under two broad morphologies: fully polar and low latitude emissions. Visibility modeling of each structure suggests the non-uniformity of the photon distributions across the Chandra intervals are likely associated with the switching on/off of magnetospheric drivers as opposed to geometrical effects. The combination of ultraviolet (UV) and X-ray morphological structures is a powerful tool to elucidate the behavior of both electrons and ions and their link to solar wind/magnetospheric conditions in the absence of an upstream solar monitor. Although much work is still needed to progress the use of X-ray morphology as a diagnostic tool, we set the foundations for future studies to continue this vital research
Jupiter's XâRay and UV Dark Polar Region
We present 14 simultaneous Chandra X-ray Observatory (CXO)-Hubble Space Telescope (HST) observations of Jupiter's Northern X-ray and ultraviolet (UV) aurorae from 2016 to 2019. Despite the variety of dynamic UV and X-ray auroral structures, one region is conspicuous by its persistent absence of emission: the dark polar region (DPR). Previous HST observations have shown that very little UV emission is produced by the DPR. We find that the DPR also produces very few X-ray photons. For all 14 observations, the low level of X-ray emission from the DPR is consistent (within 2-standard deviations) with scattered solar emission and/or photons spread by Chandra's Point Spread Function from known X-ray-bright regions. We therefore conclude that for these 14 observations the DPR produced no statistically significant detectable X-ray signature
Intervals of Intense Energetic Electron Beams Over Jupiter's Poles
Juno's Jupiter Energetic particle Detector Instrument often detects energetic electron beams over Jupiter's polar regions. In this paper, we document a subset of intense magnetic fieldâaligned beams of energetic electrons moving away from Jupiter at high magnetic latitudes both north and south of the planet. The number fluxes of these beams are often dominated by electrons with energies above about 1 MeV. These very narrow beams can create broad angular responses in the Jupiter Energetic particle Detector Instrument with unique signatures in the detector count rates, probably because of >10 MeV electrons. We use these signatures to identify the most intense beams. These beams occur primarily above the swirl region of the polar cap aurora. This polar region is described as being of low brightness and high absorption and the most magnetically âopenâ at Jupiter
Jupiter Science Enabled by ESA's Jupiter Icy Moons Explorer
ESAâs Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210Â nm), visible imaging (340-1080Â nm), visible/near-infrared spectroscopy (0.49-5.56Â ÎŒm), and sub-millimetre sounding (near 530-625Â GHz and 1067-1275Â GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet
Jupiter science Enabled by ESA's Jupiter Icy Moons Explorer
ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210Â nm), visible imaging (340-1080Â nm), visible/near-infrared spectroscopy (0.49-5.56Â ÎŒm), and sub-millimetre sounding (near 530-625Â GHz and 1067-1275Â GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet
Adaptive Significance of the Formation of Multi-Species Fish Spawning Aggregations near Submerged Capes
BACKGROUND: Many fishes are known to spawn at distinct geomorphological features such as submerged capes or "promontories," and the widespread use of these sites for spawning must imply some evolutionary advantage. Spawning at these capes is thought to result in rapid offshore transport of eggs, thereby reducing predation levels and facilitating dispersal to areas of suitable habitat. METHODOLOGY/PRINCIPAL FINDINGS: To test this "off-reef transport" hypothesis, we use a hydrodynamic model and explore the effects of topography on currents at submerged capes where spawning occurs and at similar capes where spawning does not occur, along the Mesoamerican Barrier Reef. All capes modeled in this study produced eddy-shedding regimes, but specific eddy attributes differed between spawning and non-spawning sites. Eddies at spawning sites were significantly stronger than those at non-spawning sites, and upwelling and fronts were the products of the eddy formation process. Frontal zones, present particularly at the edges of eddies near the shelf, may serve to retain larvae and nutrients. Spawning site eddies were also more predictable in terms of diameter and longevity. Passive particles released at spawning and control sites were dispersed from the release site at similar rates, but particles from spawning sites were more highly aggregated in their distributions than those from control sites, and remained closer to shore at all times. CONCLUSIONS/SIGNIFICANCE: Our findings contradict previous hypotheses that cape spawning leads to high egg dispersion due to offshore transport, and that they are attractive for spawning due to high, variable currents. Rather, we show that current regimes at spawning sites are more predictable, concentrate the eggs, and keep larvae closer to shore. These attributes would confer evolutionary advantages by maintaining relatively similar recruitment patterns year after year
- âŠ