2,740 research outputs found

    Timeliness of Clinic Attendance is a good predictor of Virological Response and Resistance to Antiretroviral drugs in HIV-infected patients

    Get PDF
    Ensuring long-term adherence to therapy is essential for the success of HIV treatment. As access to viral load monitoring and genotyping is poor in resource-limited settings, a simple tool to monitor adherence is needed. We assessed the relationship between an indicator based on timeliness of clinic attendance and virological response and HIV drug resistance

    T helper cell subsets specific for pseudomonas aeruginosa in healthy individuals and patients with cystic fibrosis

    Get PDF
    Background: We set out to determine the magnitude of antigen-specific memory T helper cell responses to Pseudomonas aeruginosa in healthy humans and patients with cystic fibrosis. Methods: Peripheral blood human memory CD4+ T cells were co-cultured with dendritic cells that had been infected with different strains of Pseudomonas aeruginosa. The T helper response was determined by measuring proliferation, immunoassay of cytokine output, and immunostaining of intracellular cytokines. Results: Healthy individuals and patients with cystic fibrosis had robust antigen-specific memory CD4+ T cell responses to Pseudomonas aeruginosa that not only contained a Th1 and Th17 component but also Th22 cells. In contrast to previous descriptions of human Th22 cells, these Pseudomonal-specific Th22 cells lacked the skin homing markers CCR4 or CCR10, although were CCR6+. Healthy individuals and patients with cystic fibrosis had similar levels of Th22 cells, but the patient group had significantly fewer Th17 cells in peripheral blood. Conclusions: Th22 cells specific to Pseudomonas aeruginosa are induced in both healthy individuals and patients with cystic fibrosis. Along with Th17 cells, they may play an important role in the pulmonary response to this microbe in patients with cystic fibrosis and other conditions

    Testing the theory of immune selection in cancers that break the rules of transplantation

    Get PDF
    Modification of cancer cells likely to reduce their immunogenicity, including loss or down-regulation of MHC molecules, is now well documented and has become the main support for the concept of immune surveillance. The evidence that these modifications, in fact, result from selection by the immune system is less clear, since the possibility that they may result from reorganized metabolism associated with proliferation or from cell de-differentiation remains. Here, we (a) survey old and new transplantation experiments that test the possibility of selection and (b) survey how transmissible tumours of dogs and Tasmanian devils provide naturally evolved tests of immune surveillance

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    Transcriptome pathways unique to dehydration tolerant relatives of modern wheat

    Get PDF
    Among abiotic stressors, drought is a major factor responsible for dramatic yield loss in agriculture. In order to reveal differences in global expression profiles of drought tolerant and sensitive wild emmer wheat genotypes, a previously deployed shock-like dehydration process was utilized to compare transcriptomes at two time points in root and leaf tissues using the Affymetrix GeneChip(R) Wheat Genome Array hybridization. The comparison of transcriptomes reveal several unique genes or expression patterns such as differential usage of IP(3)-dependent signal transduction pathways, ethylene- and abscisic acid (ABA)-dependent signaling, and preferential or faster induction of ABA-dependent transcription factors by the tolerant genotype that distinguish contrasting genotypes indicative of distinctive stress response pathways. The data also show that wild emmer wheat is capable of engaging known drought stress responsive mechanisms. The global comparison of transcriptomes in the absence of and after dehydration underlined the gene networks especially in root tissues that may have been lost in the selection processes generating modern bread wheats

    Coexistence between renal cell cancer and Hodgkin's lymphoma: A rare coincidence

    Get PDF
    BACKGROUND: Renal cell carcinoma is the most common kidney tumor in adults and accounts for approximately 3% of adult malignancies. An increased incidence of second malignancies has been well documented in a number of different disorders, such as head and neck tumors, and hairy cell leukemia. In addition, treatment associated second malignancies (usually leukemias and lymphomas but also solid tumors) have been described in long term survivors of Hodgkin's lymphoma (HL), Non Hodgkin's lymphoma and in various pediatric tumors. CASE PRESENTATION: We present the case of a 66 year-old woman with abdominal pain and dyspnea. We performed a thorax CT scan that showed lymph nodes enlargement and subsequently by presence of abdominal pain was performed an abdominal and pelvis CT scan that showed a right kidney tumor of 4 × 5 cms besides of abdominal lymph nodes enlargement. A radical right nephrectomy was designed and Hodgkin's lymphoma was diagnosed in the abdominal lymph nodes while renal cell tumor exhibited a renal cell cancer. Patient received EVA protocol achieving complete response. CONCLUSION: We described the first case reported in the medical literature of the coexistence between Hodgkin's lymphoma and renal cell cancer. Previous reports have shown the relationship of lymphoid neoplasms with solid tumors, but they have usually described secondary forms of cancer related to chemotherapy

    Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure

    Get PDF
    Ultrafast electron thermalization - the process leading to Auger recombination, carrier multiplication via impact ionization and hot carrier luminescence - occurs when optically excited electrons in a material undergo rapid electron-electron scattering to redistribute excess energy and reach electronic thermal equilibrium. Due to extremely short time and length scales, the measurement and manipulation of electron thermalization in nanoscale devices remains challenging even with the most advanced ultrafast laser techniques. Here, we overcome this challenge by leveraging the atomic thinness of two-dimensional van der Waals (vdW) materials in order to introduce a highly tunable electron transfer pathway that directly competes with electron thermalization. We realize this scheme in a graphene-boron nitride-graphene (G-BN-G) vdW heterostructure, through which optically excited carriers are transported from one graphene layer to the other. By applying an interlayer bias voltage or varying the excitation photon energy, interlayer carrier transport can be controlled to occur faster or slower than the intralayer scattering events, thus effectively tuning the electron thermalization pathways in graphene. Our findings, which demonstrate a novel means to probe and directly modulate electron energy transport in nanoscale materials, represent an important step toward designing and implementing novel optoelectronic and energy-harvesting devices with tailored microscopic properties.Comment: Accepted to Nature Physic
    corecore