114 research outputs found

    Eikonal methods applied to gravitational scattering amplitudes

    Get PDF
    We apply factorization and eikonal methods from gauge theories to scattering amplitudes in gravity. We hypothesize that these amplitudes factor into an IR-divergent soft function and an IR-finite hard function, with the former given by the expectation value of a product of gravitational Wilson line operators. Using this approach, we show that the IR-divergent part of the n-graviton scattering amplitude is given by the exponential of the one-loop IR divergence, as originally discovered by Weinberg, with no additional subleading IR-divergent contributions in dimensional regularization.Comment: 16 pages, 3 figures; v2: title change and minor rewording (published version); v3: typos corrected in eqs.(3.2),(4.1

    On soft singularities at three loops and beyond

    Get PDF
    We report on further progress in understanding soft singularities of massless gauge theory scattering amplitudes. Recently, a set of equations was derived based on Sudakov factorization, constraining the soft anomalous dimension matrix of multi-leg scattering amplitudes to any loop order, and relating it to the cusp anomalous dimension. The minimal solution to these equations was shown to be a sum over color dipoles. Here we explore potential contributions to the soft anomalous dimension that go beyond the sum-over-dipoles formula. Such contributions are constrained by factorization and invariance under rescaling of parton momenta to be functions of conformally invariant cross ratios. Therefore, they must correlate the color and kinematic degrees of freedom of at least four hard partons, corresponding to gluon webs that connect four eikonal lines, which first appear at three loops. We analyze potential contributions, combining all available constraints, including Bose symmetry, the expected degree of transcendentality, and the singularity structure in the limit where two hard partons become collinear. We find that if the kinematic dependence is solely through products of logarithms of cross ratios, then at three loops there is a unique function that is consistent with all available constraints. If polylogarithms are allowed to appear as well, then at least two additional structures are consistent with the available constraints.Comment: v2: revised version published in JHEP (minor corrections in Sec. 4; added discussion in Sec. 5.3; refs. added); v3: minor corrections (eqs. 5.11, 5.12 and 5.29); 38 pages, 3 figure

    Two-Loop Soft Corrections and Resummation of the Thrust Distribution in the Dijet Region

    Full text link
    The thrust distribution in electron-positron annihilation is a classical precision QCD observable. Using renormalization group (RG) evolution in Laplace space, we perform the resummation of logarithmically enhanced corrections in the dijet limit, T1T\to 1 to next-to-next-to-leading logarithmic (NNLL) accuracy. We independently derive the two-loop soft function for the thrust distribution and extract an analytical expression for the NNLL resummation coefficient g3g_3. To combine the resummed expressions with the fixed-order results, we derive the log(R)\log(R)-matching and RR-matching of the NNLL approximation to the fixed-order NNLO distribution.Comment: 50 pages, 12 figures, 1 table. Few minor changes. Version accepted for publication in JHE

    On the renormalization of multiparton webs

    Get PDF
    We consider the recently developed diagrammatic approach to soft-gluon exponentiation in multiparton scattering amplitudes, where the exponent is written as a sum of webs - closed sets of diagrams whose colour and kinematic parts are entangled via mixing matrices. A complementary approach to exponentiation is based on the multiplicative renormalizability of intersecting Wilson lines, and their subsequent finite anomalous dimension. Relating this framework to that of webs, we derive renormalization constraints expressing all multiple poles of any given web in terms of lower-order webs. We examine these constraints explicitly up to four loops, and find that they are realised through the action of the web mixing matrices in conjunction with the fact that multiple pole terms in each diagram reduce to sums of products of lower-loop integrals. Relevant singularities of multi-eikonal amplitudes up to three loops are calculated in dimensional regularization using an exponential infrared regulator. Finally, we formulate a new conjecture for web mixing matrices, involving a weighted sum over column entries. Our results form an important step in understanding non-Abelian exponentiation in multiparton amplitudes, and pave the way for higher-loop computations of the soft anomalous dimension.Comment: 60 pages, 15 figure

    Factorization Properties of Soft Graviton Amplitudes

    Full text link
    We apply recently developed path integral resummation methods to perturbative quantum gravity. In particular, we provide supporting evidence that eikonal graviton amplitudes factorize into hard and soft parts, and confirm a recent hypothesis that soft gravitons are modelled by vacuum expectation values of products of certain Wilson line operators, which differ for massless and massive particles. We also investigate terms which break this factorization, and find that they are subleading with respect to the eikonal amplitude. The results may help in understanding the connections between gravity and gauge theories in more detail, as well as in studying gravitational radiation beyond the eikonal approximation.Comment: 35 pages, 5 figure

    Non-global Structure of the O({\alpha}_s^2) Dijet Soft Function

    Full text link
    High energy scattering processes involving jets generically involve matrix elements of light- like Wilson lines, known as soft functions. These describe the structure of soft contributions to observables and encode color and kinematic correlations between jets. We compute the dijet soft function to O({\alpha}_s^2) as a function of the two jet invariant masses, focusing on terms not determined by its renormalization group evolution that have a non-separable dependence on these masses. Our results include non-global single and double logarithms, and analytic results for the full set of non-logarithmic contributions as well. Using a recent result for the thrust constant, we present the complete O({\alpha}_s^2) soft function for dijet production in both position and momentum space.Comment: 55 pages, 8 figures. v2: extended discussion of double logs in the hard regime. v3: minor typos corrected, version published in JHEP. v4: typos in Eq. (3.33), (3.39), (3.43) corrected; this does not affect the main result, numerical results, or conclusion

    Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach

    Get PDF
    We consider the problem of soft gluon resummation for gauge theory amplitudes and cross sections, at next-to-eikonal order, using a Feynman diagram approach. At the amplitude level, we prove exponentiation for the set of factorizable contributions, and construct effective Feynman rules which can be used to compute next-to-eikonal emissions directly in the logarithm of the amplitude, finding agreement with earlier results obtained using path-integral methods. For cross sections, we also consider sub-eikonal corrections to the phase space for multiple soft-gluon emissions, which contribute to next-to-eikonal logarithms. To clarify the discussion, we examine a class of log(1 - x) terms in the Drell-Yan cross-section up to two loops. Our results are the first steps towards a systematic generalization of threshold resummations to next-to-leading power in the threshold expansion.Comment: 66 pages, 19 figure

    General properties of multiparton webs: proofs from combinatorics

    Get PDF
    Recently, the diagrammatic description of soft-gluon exponentiation in scattering amplitudes has been generalized to the multiparton case. It was shown that the exponent of Wilson-line correlators is a sum of webs, where each web is formed through mixing between the kinematic factors and colour factors of a closed set of diagrams which are mutually related by permuting the gluon attachments to the Wilson lines. In this paper we use replica trick methods, as well as results from enumerative combinatorics, to prove that web mixing matrices are always: (a) idempotent, thus acting as projection operators; and (b) have zero sum rows: the elements in each row in these matrices sum up to zero, thus removing components that are symmetric under permutation of gluon attachments. Furthermore, in webs containing both planar and non-planar diagrams we show that the zero sum property holds separately for these two sets. The properties we establish here are completely general and form an important step in elucidating the structure of exponentiation in non-Abelian gauge theories.Comment: 38 pages, 10 figure

    A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory

    Get PDF
    Many observables in QCD rely upon the resummation of perturbation theory to retain predictive power. Resummation follows after one factorizes the cross section into the rele- vant modes. The class of observables which are sensitive to soft recoil effects are particularly challenging to factorize and resum since they involve rapidity logarithms. In this paper we will present a formalism which allows one to factorize and resum the perturbative series for such observables in a systematic fashion through the notion of a "rapidity renormalization group". That is, a Collin-Soper like equation is realized as a renormalization group equation, but has a more universal applicability to observables beyond the traditional transverse momentum dependent parton distribution functions (TMDPDFs) and the Sudakov form factor. This formalism has the feature that it allows one to track the (non-standard) scheme dependence which is inherent in any scenario where one performs a resummation of rapidity divergences. We present a pedagogical introduction to the formalism by applying it to the well-known massive Sudakov form factor. The formalism is then used to study observables of current interest. A factorization theorem for the transverse momentum distribution of Higgs production is presented along with the result for the resummed cross section at NLL. Our formalism allows one to define gauge invariant TMDPDFs which are independent of both the hard scattering amplitude and the soft function, i.e. they are uni- versal. We present details of the factorization and resummation of the jet broadening cross section including a renormalization in pT space. We furthermore show how to regulate and renormalize exclusive processes which are plagued by endpoint singularities in such a way as to allow for a consistent resummation.Comment: Typos in Appendix C corrected, as well as a typo in eq. 5.6

    From Webs to Polylogarithms

    Get PDF
    We compute a class of diagrams contributing to the multi-leg soft anomalous dimension through three loops, by renormalizing a product of semi-infinite non-lightlike Wilson lines in dimensional regularization. Using non-Abelian exponentiation we directly compute contributions to the exponent in terms of webs. We develop a general strategy to compute webs with multiple gluon exchanges between Wilson lines in configuration space, and explore their analytic structure in terms of αij\alpha_{ij}, the exponential of the Minkowski cusp angle formed between the lines ii and jj. We show that beyond the obvious inversion symmetry αij1/αij\alpha_{ij}\to 1/\alpha_{ij}, at the level of the symbol the result also admits a crossing symmetry αijαij\alpha_{ij}\to -\alpha_{ij}, relating spacelike and timelike kinematics, and hence argue that in this class of webs the symbol alphabet is restricted to αij\alpha_{ij} and 1αij21-\alpha_{ij}^2. We carry out the calculation up to three gluons connecting four Wilson lines, finding that the contributions to the soft anomalous dimension are remarkably simple: they involve pure functions of uniform weight, which are written as a sum of products of polylogarithms, each depending on a single cusp angle. We conjecture that this type of factorization extends to all multiple-gluon-exchange contributions to the anomalous dimension.Comment: 64 pages, 8 figure
    corecore