151 research outputs found

    Hyperhomocysteinemia and Low Folate and Vitamin B12 Are Associated with Vascular Dysfunction and Impaired Nitric Oxide Sensitivity in Morbidly Obese Patients.

    Get PDF
    There is a high prevalence of hyperhomocysteinemia that has been linked to high cardiovascular risk in obese individuals and could be attributed to poor nutritional status of folate and vitamin B12. We sought to examine the association between blood homocysteine (Hcy) folate, and vitamin B12 levels and vascular dysfunction in morbidly obese adults using novel ex vivo flow-induced dilation (FID) measurements of isolated adipose tissue arterioles. Brachial artery flow-mediated dilation (FMD) was also measured. Subcutaneous and visceral adipose tissue biopsies were obtained from morbidly obese individuals and non-obese controls. Resistance arterioles were isolated in which FID, acetylcholine-induced dilation (AChID), and nitric oxide (NO) production were measured in the absence or presence of the NO synthase inhibitor, L-NAME, Hcy, or the superoxide dismutase mimetic, TEMPOL. Our results demonstrated that plasma Hcy concentrations were significantly higher, while folate, vitamin B12, and NO were significantly lower in obese subjects compared to controls. Hcy concentrations correlated positively with BMI, fat %, and insulin levels but not with folate or vitamin B12. Brachial and arteriolar vasodilation were lower in obese subjects, positively correlated with folate and vitamin B12, and inversely correlated with Hcy. Arteriolar NO measurements and sensitivity to L-NAME were lower in obese subjects compared to controls. Finally, Hcy incubation reduced arteriolar FID and NO sensitivity, an effect that was abolished by TEMPOL. In conclusion, these data suggest that high concentrations of plasma Hcy and low concentrations of folate and vitamin B12 could be independent predictors of vascular dysfunction in morbidly obese individuals

    Triage Considerations for Patients Referred for Structural Heart Disease Intervention During the Coronavirus Disease 2019 (COVID-19) Pandemic: An ACC /SCAI Consensus Statement

    Get PDF
    The COVID-19 pandemic has strained health care resources around the world causing many institutions to curtail or stop elective procedures. This has resulted in the inability to care for patients valvular and structural heart disease (SHD) in a timely fashion potentially placing these patients at increased risk for adverse cardiovascular complications including congestive heart failure and death. The effective triage of these patients has become challenging in the current environment as clinicians have had to weigh the risk of bringing susceptible patients into the hospital environment during the COVID-19 pandemic versus the risk of delaying a needed procedure. In this document, we suggest guidelines as to how to triage patients in need of SHD interventions and provide a framework of how to decide when it may be appropriate to proceed with intervention despite the ongoing pandemic. In particular, we address the triage of patients in need of trans-catheter aortic valve replacement and percutaneous mitral valve repair. We also address procedural issues and considerations for the function of structural heart disease teams during the COVID-19 pandemic

    Triage Considerations for Patients Referred for Structural Heart Disease Intervention During the COVID-19 Pandemic: An ACC/SCAI Position Statement

    Get PDF
    The coronavirus disease-2019 (COVID-19) pandemic has strained health care resources around the world, causing many institutions to curtail or stop elective procedures. This has resulted in an inability to care for patients with valvular and structural heart disease in a timely fashion, potentially placing these patients at increased risk for adverse cardiovascular complications, including CHF and death. The effective triage of these patients has become challenging in the current environment as clinicians have had to weigh the risk of bringing susceptible patients into the hospital environment during the COVID-19 pandemic against the risk of delaying a needed procedure. In this document, the authors suggest guidelines for how to triage patients in need of structural heart disease interventions and provide a framework for how to decide when it may be appropriate to proceed with intervention despite the ongoing pandemic. In particular, the authors address the triage of patients in need of transcatheter aortic valve replacement and percutaneous mitral valve repair. The authors also address procedural issues and considerations for the function of structural heart disease teams during the COVID-19 pandemic

    Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR)

    Get PDF
    Bacterial populations co-ordinate gene expression collectively through quorum sensing (QS), a cell-to-cell communication mechanism employing diffusible signal molecules. The LysR-type transcriptional regulator (LTTR) protein PqsR (MvfR) is a key component of alkyl-quinolone (AQ)-dependent QS in Pseudomonas aeruginosa. PqsR is activated by 2-alkyl-4-quinolones including the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone), its precursor 2-heptyl-4- hydroxyquinoline (HHQ) and their C9 congeners, 2-nonyl-3-hydroxy-4(1H)-quinolone (C9-PQS) and 2-nonyl-4-hydroxyquinoline (NHQ). These drive the autoinduction of AQ biosynthesis and the up-regulation of key virulence determinants as a function of bacterial population density. Consequently, PqsR constitutes a potential target for novel antibacterial agents which attenuate infection through the blockade of virulence. Here we present the crystal structures of the PqsR co-inducer binding domain (CBD) and a complex with the native agonist NHQ. We show that the structure of the PqsR CBD has an unusually large ligand-binding pocket in which a native AQ agonist is stabilized entirely by hydrophobic interactions. Through a ligand-based design strategy we synthesized and evaluated a series of 50 AQ and novel quinazolinone (QZN) analogues and measured the impact on AQ biosynthesis, virulence gene expression and biofilm development. The simple exchange of two isosteres (OH for NH2) switches a QZN agonist to an antagonist with a concomitant impact on the induction of bacterial virulence factor production. We also determined the complex crystal structure of a QZN antagonist bound to PqsR revealing a similar orientation in the ligand binding pocket to the native agonist NHQ. This structure represents the first description of an LTTR-antagonist complex. Overall these studies present novel insights into LTTR ligand binding and ligand-based drug design and provide a chemical scaffold for further anti-P. aeruginosa virulence drug development by targeting the AQ receptor PqsR

    One Problem, Many Solutions: Simple Statistical Approaches Help Unravel the Complexity of the Immune System in an Ecological Context

    Get PDF
    The immune system is a complex collection of interrelated and overlapping solutions to the problem of disease. To deal with this complexity, researchers have devised multiple ways to measure immune function and to analyze the resulting data. In this way both organisms and researchers employ many tactics to solve a complex problem. One challenge facing ecological immunologists is the question of how these many dimensions of immune function can be synthesized to facilitate meaningful interpretations and conclusions. We tackle this challenge by employing and comparing several statistical methods, which we used to test assumptions about how multiple aspects of immune function are related at different organizational levels. We analyzed three distinct datasets that characterized 1) species, 2) subspecies, and 3) among- and within-individual level differences in the relationships among multiple immune indices. Specifically, we used common principal components analysis (CPCA) and two simpler approaches, pair-wise correlations and correlation circles. We also provide a simple example of how these techniques could be used to analyze data from multiple studies. Our findings lead to several general conclusions. First, relationships among indices of immune function may be consistent among some organizational groups (e.g. months over the annual cycle) but not others (e.g. species); therefore any assumption of consistency requires testing before further analyses. Second, simple statistical techniques used in conjunction with more complex multivariate methods give a clearer and more robust picture of immune function than using complex statistics alone. Moreover, these simpler approaches have potential for analyzing comparable data from multiple studies, especially as the field of ecological immunology moves towards greater methodological standardization

    Fear of hypoglycaemia: defining a minimum clinically important difference in patients with type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To explore the concept of the Minimum Clinically Important Difference (MID) of the Worry Scale of the Hypoglycaemia Fear Survey (HFS-II) and to quantify the clinical importance of different types of patient-reported hypoglycaemia.</p> <p>Methods</p> <p>An observational study was conducted in Germany with 392 patients with type 2 diabetes mellitus treated with combinations of oral anti-hyperglycaemic agents. Patients completed the HFS-II, the Treatment Satisfaction Questionnaire for Medication (TSQM), and reported on severity of hypoglycaemia. Distribution- and anchor-based methods were used to determine MID. In turn, MID was used to determine if hypoglycaemia with or without need for assistance was clinically meaningful compared to having had no hypoglycaemia.</p> <p>Results</p> <p>112 patients (28.6%) reported hypoglycaemic episodes, with 15 patients (3.8%) reporting episodes that required assistance from others. Distribution- and anchor-based methods resulted in MID between 2.0 and 5.8 and 3.6 and 3.9 for the HFS-II, respectively. Patients who reported hypoglycaemia with (21.6) and without (12.1) need for assistance scored higher on the HFS-II (range 0 to 72) than patients who did not report hypoglycaemia (6.0).</p> <p>Conclusion</p> <p>We provide MID for HFS-II. Our findings indicate that the differences between having reported no hypoglycaemia, hypoglycaemia without need for assistance, and hypoglycaemia with need for assistance appear to be clinically important in patients with type 2 diabetes mellitus treated with oral anti-hyperglycaemic agents.</p

    Temporal and effort cost decision-making in healthy individuals with subclinical psychotic symptoms

    Get PDF
    The value people attribute to rewards is influenced both by the time and the effort required to obtain them. Impairments in these computations are described in patients with schizophrenia and appear associated with negative symptom severity. This study investigated whether deficits in temporal and effort cost computations can be observed in individuals with subclinical psychotic symptoms (PS) to determine if this dysfunction is already present in a potentially pre-psychotic period. Sixty participants, divided into three groups based on the severity of PS (high, medium and low), performed two temporal discounting tasks with food and money and a concurrent schedule task, in which the effort to obtain food increased over time. We observed that in high PS participants the discounting rate appeared linear and flatter than that exhibited by participants with medium and low PS, especially with food. In the concurrent task, compared to those with low PS, participants with high PS exerted tendentially less effort to obtain snacks only when the required effort was high. Participants exerting less effort in the higher effort condition were those with higher negative symptoms. These results suggest that aberrant temporal and effort cost computations might be present in individuals with subclinical PS and therefore could represent a vulnerability marker for psychosis

    Serotonergic chemosensory neurons modify the <i>C. elegans</i> immune response by regulating G-protein signaling in epithelial cells

    Get PDF
    The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food

    A Whole Cell Assay to Measure Caspase-6 Activity by Detecting Cleavage of Lamin A/C

    Get PDF
    Caspase-6 is a cysteinyl protease implicated in neurodegenerative conditions including Alzheimer's and Huntington's disease making it an attractive target for therapeutic intervention. A greater understanding of the role of caspase-6 in disease has been hampered by a lack of suitable cellular assays capable of specifically detecting caspase-6 activity in an intact cell environment. This is mainly due to the use of commercially available peptide substrates and inhibitors which lack the required specificity to facilitate development of this type of assay. We report here a 384-well whole-cell chemiluminescent ELISA assay that monitors the proteolytic degradation of endogenously expressed lamin A/C during the early stages of caspase-dependent apoptosis. The specificity of lamin A/C proteolysis by caspase-6 was demonstrated against recombinant caspase family members and further confirmed in genetic deletion studies. In the assay, plasma membrane integrity remained intact as assessed by release of lactate dehydrogenase from the intracellular environment and the exclusion of cell impermeable peptide inhibitors, despite the induction of an apoptotic state. The method described here is a robust tool to support drug discovery efforts targeting caspase-6 and is the first reported to specifically monitor endogenous caspase-6 activity in a cellular context

    Intra-Accumbens Injection of a Dopamine Aptamer Abates MK-801-Induced Cognitive Dysfunction in a Model of Schizophrenia

    Get PDF
    Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7), tris buffer (n = 6) or a randomized DNA oligonucleotide (n = 7). Animals were then treated systemically with MK-801 (0.1 mg/kg) and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease
    • …
    corecore