1,758 research outputs found

    The relationship between fragility, configurational entropy and the potential energy landscape of glass forming liquids

    Full text link
    Glass is a microscopically disordered, solid form of matter that results when a fluid is cooled or compressed in such a fashion that it does not crystallise. Almost all types of materials are capable of glass formation -- polymers, metal alloys, and molten salts, to name a few. Given such diversity, organising principles which systematise data concerning glass formation are invaluable. One such principle is the classification of glass formers according to their fragility\cite{fragility}. Fragility measures the rapidity with which a liquid's properties such as viscosity change as the glassy state is approached. Although the relationship between features of the energy landscape of a glass former, its configurational entropy and fragility have been analysed previously (e. g.,\cite{speedyfr}), an understanding of the origins of fragility in these features is far from being well established. Results for a model liquid, whose fragility depends on its bulk density, are presented in this letter. Analysis of the relationship between fragility and quantitative measures of the energy landscape (the complicated dependence of energy on configuration) reveal that the fragility depends on changes in the vibrational properties of individual energy basins, in addition to the total number of such basins present, and their spread in energy. A thermodynamic expression for fragility is derived, which is in quantitative agreement with {\it kinetic} fragilities obtained from the liquid's diffusivity.Comment: 8 pages, 3 figure

    From weak coupling to spinning strings

    Get PDF
    We identify the gauge theory dual of a spinning string of minimal energy with spins S_1, S_2 on AdS_5 and charge J on S^5. For this purpose we focus on a certain set of local operators with two different types of covariant derivatives acting on complex scalar fields. We analyse the corresponding nested Bethe equations for the ground states in the limit of large spins. The auxiliary Bethe roots form certain string configurations in the complex plane, which enable us to derive integral equations for the leading and sub-leading contribution to the anomalous dimension. The results can be expressed through the observables of the sl(2) sub-sector, i.e. the cusp anomaly f(g) and the virtual scaling function B_L(g), rendering the strong-coupling analysis straightforward. Furthermore, we also study a particular sub-class of these operators specialising to a scaling limit with finite values of the second spin at weak and strong coupling.Comment: 23 pages, 3 figures, minor changes, references adde

    Fermionic T-duality in the pp-wave limit

    Full text link
    AdS5 X S5 and its pp-wave limit are self-dual under transformations involving eight fermionic T-dualities, a property which accounts for symmetries seen in scattering amplitudes in N=4 super-Yang-Mills. Despite strong evidence for similar symmetries in the amplitudes of three-dimensional N=6 ABJM theory, a corresponding self-duality in the dual geometry AdS4 X CP3 currently eludes us. Here, working with the type IIA pp-wave limit of AdS4 X CP3 preserving twenty four supercharges, we show that the pp-wave is self-dual with respect to eight commuting fermionic T-dualities and not the six expected. In addition, we show the same symmetry can be found in a superposition pp-wave and a generic pp-wave with twenty and sixteen unbroken supersymmetries respectively, strongly suggesting that self-duality under fermionic T-duality may be a symmetry of all pp-waves.Comment: 21 pages, typos fixe

    From Correlators to Wilson Loops in Chern-Simons Matter Theories

    Full text link
    We study n-point correlation functions for chiral primary operators in three dimensional supersymmetric Chern-Simons matter theories. Our analysis is carried on in N=2 superspace and covers N=2,3 supersymmetric CFT's, the N=6 ABJM and the N=8 BLG models. In the limit where the positions of adjacent operators become light-like, we find that the one-loop n-point correlator divided by its tree level expression coincides with a light-like n-polygon Wilson loop. Remarkably, the result can be simply expressed as a linear combination of five dimensional two-mass easy boxes. We manage to evaluate the integrals analytically and find a vanishing result, in agreement with previous findings for Wilson loops.Comment: 32 pages, 6 figures, JHEP

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Nanoparticles in cigarette smoke; real-time undiluted measurements by a scanning mobility particle sizer

    Get PDF
    Cigarette smoke is a complex mixture of smoke constituents, often characterised by size-resolved particle distributions. Since descriptions of ultrafine particles <50 nm are absent, our aim was to explore the existence of these nanoparticles in fresh and undiluted cigarette smoke. We measured undiluted smoke particles real-time by a scanning mobility particle sizer with Faraday cup electrometer, integrated in our custom-made smoking machine. Cigarettes were smoked by 2 s puffs, 30 s puff intervals and 50 ml puff volume. We tested six different cigarettes (1–10 mg tar per cigarette) at ten particle size-ranges between 6 and 50 nm, and repeated measurements five times. The formation of nanoparticles in fresh cigarette smoke was observed over the entire range between 6 and 50 nm, and reproduced in all cigarettes. The highest mean yield was 8.8 × 109 (SD = 1.1 × 109) particles per cigarette at the largest particle size range by high-tar cigarettes. Nanoparticle counts appear to increase with particle size, claimed tar values and blocking of filter ventilation holes, and inversely with butt length. Fresh undiluted cigarette smoke contains large amounts of potentially toxic nanoparticles <50 nm. We recommend to further study nanoparticles in the characterisation of cigarette smoke

    Nucleocytoplasmic transport: a thermodynamic mechanism

    Full text link
    The nuclear pore supports molecular communication between cytoplasm and nucleus in eukaryotic cells. Selective transport of proteins is mediated by soluble receptors, whose regulation by the small GTPase Ran leads to cargo accumulation in, or depletion from the nucleus, i.e., nuclear import or nuclear export. We consider the operation of this transport system by a combined analytical and experimental approach. Provocative predictions of a simple model were tested using cell-free nuclei reconstituted in Xenopus egg extract, a system well suited to quantitative studies. We found that accumulation capacity is limited, so that introduction of one import cargo leads to egress of another. Clearly, the pore per se does not determine transport directionality. Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic concentration in steady-state. The model shows that this ratio should in fact be independent of the receptor-cargo affinity, though kinetics may be strongly influenced. Numerical conservation of the system components highlights a conflict between the observations and the popular concept of transport cycles. We suggest that chemical partitioning provides a framework to understand the capacity to generate concentration gradients by equilibration of the receptor-cargo intermediary.Comment: in press at HFSP Journal, vol 3 16 text pages, 1 table, 4 figures, plus Supplementary Material include
    corecore